AD-A256 174

AVHEIEE AR
. 2
0CT1 4 19028 W

BEST | o
- AVAILABLE COPY R

. R
M e
. .-
.. . pom o B
o oo
Vol
C e v

When this report is no longer needed return it to
the originator.

The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

The contents of this report are not to be used for

advertising, publication, or promotional purposes.

Citation of trade names does not constitute an

official endorsement or approval of the use of such
commercial products.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

gathering and Maintaining the data needed, and compieting and reviewing the collection of information Send comments r

Public reporting burden for this collection of INfOrmMation s estimated 0 average ! hour per response. Including the tme tor FeVIEWINg INSTrUCTIONS, searching existing data sources,

arding this burden estimate or any other aspect ot this

collection ot infcrmation. inciuding suggestions tor reducing this burgen. 10 Washington Headauarters Services, Directorate for intormation Operations and Reports, 1215 jefferson
Davis Highway Sutte 1204. Arhington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0 188), Washington. DC 20503

2. REPORT DATE

August 1992

1. AGENCY USE ONLY (Leave blank)
Final report

3. REPORT TYPE AND DATES COVERED

a. TITLE AND SUBTITLE
Vendor Information System (VIS) Systems Manual

5. FUNDING NUMBERS

6. AUTHOR(S)

Patti S. Duett, Monique F. Harrison

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USAE Waterways Experiment Station, Information Technology
Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199

8. PERFORMING ORGANIZATION
REPORT NUMBER

Technical Report
ITL-92-5

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Road, Springfield, VA 22161.

Available from National Technical Information Service, 5285 Port Royal

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
|V 24

This manual provides the necessary support documentation to the personnel responsible for
either maintenance or support of the Vendor Information System (VIS). The manual consists of
documentation for the menu system and individual programs plus a complete data base dictionary.

-

et
¢t

v~

Y 7554

‘ﬁ&@\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\x |

-26944

14. SUBJECT TERMS

15. NUMBER OF PAGES
160

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION

OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescnbed by ANSI Std 239.!8
298-102

PREFACE

This manual provides the necessary support documentation to the personnel responsible
for either maintenance or support of the Vendor Information System (VIS). The manual consists
of documentation for the menu system and individual programs plus a complete data base
dictionary.

The information for this manual was compiled at the US Army Engineer Waterways
Experiment Station (WES) by Patti S. Duett and Monique F. Harrison, Systems Modernization
Unit (SMU), Computer Science Division (CSD), Information Technology Laboratory (ITL).
Mrs. Barbara Comes was Chief of SMU, Dr. Windell Ingram was Chief of CSD, and

Dr. N. Radhakrishnan was Director of ITL. Mr. Elvin E. McFerrin was Chief of the Finance and
Accounting Branch, and Mr. Wayne J. Sutter was Chief of the Resource Management Office.
The special efforts of Dr. Jerome Mahloch, Program Manager, ITL, who was of great assistance
in the preparation of this manual, are gratefully acknowledged.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin.
Commander and Deputy Director was COL Leonard G. Hassell, EN.

s uians

TABLE OF CONTENTS

I, INTRODUCTION i i it i et et eeenes 7
2. VISMENU SYSTEM i it iiieiaens 9
2.1 Background.t it e et e et s 9
2.2 Program EXecutioncciiiiitiernnnecoanennnnnens 10
23 RoleMaintenancec.c.outiinenreenseonenonnesonneans 10
3. SQL*FOIMSottt i i e e e e e 11
K70 2 T 1. PP 11
K < T 1) P 17
K T T 11 < 21
34 VO INP .. ettt 22
K T T 2 T 1) < 24
36 VO INP ... i i i e i e e i 29
37 VIO INP ..ttt ittt ittt e i it s 34
3.8 VI INP .. ittt ittt itteeeneeeaanssenaannnnnns 37
3.9 VI2 INP ...ttt it e s 40
310 VI INP ..ot ittt it ittt 41
311 VIS INP .. i i i e 42
312 VIO INP ... ittt ittt ittt teeeennnneanannsnnnnnanns 43
313 VIT NP i i i e e e e e e i e 44
314 VI8 INP ... ittt teenetaaennannennanens 45
315 VIO INP ...t ittt e e e i i i e 46
316 V20, INP ... ittt it i e e 47
307 V24 INP ... i i e i i e e 48
308 V25 INP .. ittt ittt it itttsatat ittty 49
319 V26, INP ...ttt it it i i e i i i e e e 50
2

320 V30 INP ... i i i e ettt e i e s 51
321 V32 INP .. i i it e et e e s 52
322 V33 INP ... i i i i i i e e 53
323 V34 INP ... i i i i e i i e s 55
324 V3T NP .. it e e i e 56
325 V39 INP .. it i i i it e e e e e e, 57
326 VA0 _INP i i i i e e e i 58
327 VAL INP ... i i i e e i e e 59
328 VA3 INP ... i i e e e et 60
320 VA6 _INP ... i i e et et e e e 62
330 VAT INP .. i e e et e e i e s 63
331 VA8 INP ... i it i i et e e e e 69
332 MAET INP ... ittt i it it ettt i e et 71
333 MAPP INP ... i i it e e e e 72
334 MCOO INP it ittt ittt tateeaaaananaes 73
335 MEMP INP ittt it ittt aeennans 74
336 MOCC INP ...ttt ittt itiiteneetnneennaaannnnns 75
337 MORG,_INP ... i i i i i e e et 76
338 MVEND INPttt ittt titennananonenns 77
330 MVIS INP .. it it i i it ittt ae e anaes 78
4, SOQLAPIUSo e e e 80
4.1 CHTRV _SQL ... it it it ittt e et tneaeaanns 80
4.2 COEMIS _SQL i i i i i ittt ti i iaeiaennnns 81
43 DEOBLG _SQL ittt it ittt teaatnanen 82
44 DEOBLIGATE _SQL it i ittt it teeetnnesannnn 83
4.5 DISBURSEMENT SQLttt tiintaninnnsannes 84
4.6 EXPFILE 0 ittt ittt ettt ittt e eannnnns 85
47 FIXPAYCOLL_SQL . . .ttt ittt et ettt 86
48 PREII66_SQL it ittt et 87

49 PREII66TRV_SQL i i i it i 88

410 PREV23RPT_SQL 00ttt it iineannns 89
411 TBO _SQL i i i it i et i i i e 90
412 UPOBLG _SQLttt iiitttinetnnenntonstoeeneens 91
413 UPVEND _SQLttt iittttnennaneaansonnnnnns 92
414 V27 _SQL . . i i i e it i e i s 93
S. SQL*Loadercooiiiiii i e 95
20 S 7 4 ¥ 95
5.2 V2BA CTL .. it i it i ittt it 96
5.3 V28B _CTL .. ittt ittt tteetnoraetanannenns 97
54 VA4 CTL ... i ittt et ten e eataeanaanen 98
55 VISCIV CoL . .. i e ittt e et eiaaeannan 99
56 VISDFE _CTL ittt itteeeennesananaannes 100
6. SCLPROCEDURESttt 101
6.1 BATCH TRV it it ittt et 101
6.2 CO BAT i i ittt et aeiantteenneaneens 102
6.3 DEOBLG BATiiiiiiiiitttinnernnnetoinnneeansns 103
6.4 EXP BAT ... i it i it ettt e 104
6.5 PAID_MASTER _BATttt ittt tnneannsns 105
6.6 PARTPAY BAT ittt it 106
6.7 TRAVEL BAT i i i et it et e e 107
7. SQL*ReportWriterottt 108
7.1 PARTPAY REP ittt ittt 108
8. PRO*C ... e 110
8.1 V23 PC . e e e e e 110
8.2 V3L PC .. i e i e e e e e e 116
B3 VA2 PC . . i i e i e e 120
84 VA5 PC .. . e e e e e e e e 126
4

APPENDIX A - TABLEDEFINITIONSt

APPENDIX B - DATA DICTIONARY

............................

1. INTRODUCTION

This manual is intended to provide the necessary support documentation to the personnel
responsible for either maintenance or support of the Vendor Information System (VIS). It is not
intended to be either a comprehensive design manual or a tutorial for the programming languages
comprising the suite of programs known as VIS. However, this manual can be used in
conjunction with the appropriate program source listings to yield an understanding of how VIS
works. The manual consists of documentation for the menu system and individual programs plus

a complete data base dictionary.

While the menu system is part of VIS in every sense of the word, its purpose is significantly
different from the remaining programs in VIS; consequently, a slightly different format is used
to describe the program. The data base dictionary provides a listing of all data base tables, their
attributes, and definition for all attributes. This will allow the reader to readily ascertain the
principle relationships in VIS.

The bulk of this manual is dedicated to specific documentation of individual pr¢ grams comprising
VIS. This documentation includes the program name, language, a brief statement of purpose, and
the entry point. Also included is a description of input data requirements and output generated
by the program unless I/O is satisfied by interactions with the database. A brief description of
error handling procedures is also presented. In general, error handling for programs written in
SQL*Forms is straightforward, but for other programs, particularly "batch" programs, care is
taken to define the logical unit of work so that the user has a concept of what happens in terms

of the data base upon abnormal program termination.

The most critical part of individual program documentation is that section describing program
execution. This section is generally written as a "pseudo-code" or algorithmic description of

transaction processing within the program. Another important aspect included in this section are

the integrity checks performed by each program. These two aspects of VIS program

documentation are critical for support of maintenance activities.

The last section in the individual program documentation is called 'Other Program Notes’. This
section includes important aspects of each program that do not fit in previous sections or that
deserve the individual emphasis because of their importance. This area includes locking
procedures for the database, use of constants in programs, hints on optimization for performance,

and other operating system/RDBMS specific requirements for successful program execution.

2. VIS MENU SYSTEM

2.1 Background
The menuing system for VIS handles both role security and menu navigation for VIS. This
functionality is somewhat distinct from other programs in VIS and we will depart from our

conventional format to more easily explain how it works.

Security is approached in VIS by limiting access to the data base by users (other than the DBA)
thru a menu system. Furthermore, data base access is restricted to specific user roles that in turn
have selected access to programs to execute their specific functionality. This level of security
is by no means exhaustive but does provide a degree of protection against unauthorized access
to the VIS data base. The menu system and associated maintenance consists of 5 programs
written in either SQL*Forms or PRO*C. Initial entry point upon user logon to VIS is through
VMREC. A summary of each program is presented below:

Program Name Program Language Program Purpose
VMREC SQL*Forms Role Selection
MRECA PRO*C Database Connect
VMMAIN SQL*Forms Menu Navigation
VMRI SQL*FORMS Role Maintenance
MRIA PRO*C Grant Issuance

The menu system is table based and maintenance of the menu tables must be accomplished by
the System Administrator using SQL*Plus. All program output is directed to the user’s monitor
and there are no specific input requirements beyond those requested by the program. Program
termination occurs for all instances of an ORACLE error.

2.2 Program Execution
(1) User logs on to VIS using his/her assigned userid and password.
(2) Userid ic used as key to select authorized roles from VUSERID_ROLE. If no valid
roles exist, an error message is displayed and the program is terminated.
(3) Else, valid roles are displayed on screen generated by VMREC and the user is
prompted to make a selection. From this selection the connect string is built and a call
is made to MRECA.
(4) MRECA issues a disconnect from the database for the current user ard issues a
reconnect for the role selected in step (3) using an encrypted password. Control is passed
back to VMREC, which calls VMMAIN.
(5) VMMAIN is used for menu navigation specific to the role currently accessing the
database. Menu selections are presented in a hierarchical fashion ordered by a menu
order assigned to each program accessed through the menu system. VMMAIN also
maintains the original userid used in step (1) in a global area for an audit trail. Upon a

selection VMMAIN calls the selected program and transfers control to it.

2.3 Role Maintenance
(1) Maintenance of the table containing the valid roles and encrypted passwords is done
in VMRI. All updates to this table are marked by a time stamp. Prior to commit, the
grant string for the affected role is generated and control is passed to MRIA.
(2) MRIA receives the grant string created in step B(1) and immediately executes the
SQL command. Control is then returned to VMRI.
(3) VMRI enforces the unique constraint for keycode and role during any maintenance

activity.

10

3. SQL*Forms

3.1 VI_INP

T ommyY oW

Program Name: VI1_INP

Program Language: SQL*Forms
Purpose: Enter detail obligation information and create a transaction for COEMIS update.

Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

Program Execution:

(1) Input Values:

(a) Commitment Document Number (Page 1)
(b) Obligation Document Number (Page 1) - Validate against OBLIGATION
table. If it exists display a message stating obligation already exists.
(c) Contract Number (Page 1)
(d) Contract Modification Number (Page 1) - Validate against CONTRACT table.
If it exists display a message stating that modification number already exists. If
the modification number is valid go to page 2 and enter contract detail
information. If it is not a true contract obligation then leave the field blank and
continue to enter information on page 1.
(¢) Vendor Code (Page 1) - Validate against VENDOR table. If invalid display
a message stating vendor code is invalid. Provide a list values key
todisplay a list of valid vendors.
(f) Vendor Address Code (Page 1) - Validate against VENDOR_ADDR table.
If invalid display a message stating vendor address code is invalid. Provide a list
values key to display a list of valid vendor address codes.

11

(g) Organization Code (Page 1) - Validate against ORGANIZATION table. If
invalid display a message stating organization code is invalid. Provide a list
values key to display valid organization codes.

(h) Obligation Date (Page 1) - Default to the system date. Edit to make sure the
obligation date is less than or equal to the system date. Display a message stating
the obligation date must be before today’s date but not later.

(i) ADP Work Code (Page 1) - The following determines the type of funding:
Position 1 = A,B,C,D,E,F,GH or I -Civil; Position 1 = J,K,LLM,N,O,P,Q,R,S or
T - Military; Position 1 and 2 = VW - Revolving; Position 1, 2 and 3 = VW7 -
Prip. If it is Military validate against the D_F_FILE table. If not valid, display
a message stating ADP Work Code is not in D-F File. If it is valid select the
loc_appn_nur into the local appropriation number from the D_F_FILE. If it is
Civil or Revolving Fund, validate against the CIVRF table. If not valid, display
a message stating invalid ADP work code. If it is valid select the loc_appn_nbr
into the local appropriation number from the CIVRF table.

(§) Local Appropriation Number (Page 1) - Validate against APPROPRIATION
table. Display a message stating invalid appropriation.

(k) Amount (Page 1) - Amount must be between 0.00 and 9999999999.99.
Default to contract amount. If a contact mod number has been entered validate
that the amount entered is less than or equal to the contract amount. Display a
message stating you cannot obligate more than your contract amount.

(1) Item Code (Page 1) - Validate against ACCT_ELM_TYPE table. Display
message stating invalid item code. If Civil or Revolving, item code must be
between 202 and 399. If Military, item code must be 500 or between 202 and
399. If Prip, item code must be 474, 477, 479, or 498. Provide a list values key
to display valid item codes.

12

(m) Object Class Code (Page 1) - Validate against the OBJECT_CLASS_CODES
table. Display a message stating object class code is invalid. Provide a list values
key to display a list of valid object class codes.
(n) Contract Reference Modification Number (Page 2) - Default to contract mod
number on page 1.
(o) Amount (Page 2) - Must be between 0.00 and 9999999999.99
(p) Date of Award (Page 2) - Default to system date. Validate that date of award
is less than or equal to the ending date. Display message stating date of award
must be before ending date.
(@) Ending Date (Page 2) - Default to system date. Validate that ending date is
greater than or equal to the award date. Display message stating ending date must
be after date of award.
(r) Retained Percent (Page 2) - Must be between 0.00 and 99.0
(s) Discount Terms Code (Page 2) - Validate that first position must not be zero
and display message stating this. Provide list values key to display list of valid
discount terms.
(t) Tax ID (Page 2)
(u) Contracting Officer Representative (Page 2)

(2) Display Values:
(a) Vendor Name (Page 1) - Retrieve from VENDOR table based on vendor
code.
(b) Vendor Phone (Page 1) - Retrieve from VENDOR_ADDR table based on
vendor address code.
(c) Vendor Address (Page 1) - Retrieve from VENDOR_ADDR table based on
vendor address code.
(d) Vendor State (Page 1) - Retrieve from VENDOR_ADDR table based on
vendor address code.

13

(e) Vendor Zip (Page 1) - Retrieve from VENDOR_ADDR table based on vendor
address code.
(f) Vendor Country (Page 1) - Retrieve from VENDOR_ADDR table based on
vendor address code.
(3) Inserts:

(a) OBLIGATION table - Validate positions 2 & 3 of the obligation number
against the CLASS_OF_OBLIGATION table. Display a message stating invalid
class of obligation.

amount = :obligation.amount

entry_date = :obligation.entry_date

init_entry_id = user logged on

object_class_code = :obligation.object_class_code

oblg_doc_nbr = :obligation.oblg_doc_nbr

vendor_addr_code = :obligation.vendor_addr_code

vendor_code = :obligation.vendor_code

net_unliq_bal = :obligation.amount

adp_work_code = :obligation.adp_work_code

comt_doc_nbr = :control.comt_doc_nbr

org_code = :obligation.org_code

civ_mil_rvolvg_flag = :obligation.civ_mil_rvolvg_flag

status = 'C’

loc_appn_nbr = :obligation.loc_appn_nbr

contr_mod_nbr = :control.contr_mod_nbr

contr_nbr = :control.contr_nbr

14

(b) CONTRACT table
amount = :contract.amount
contr_mod_nbr = :control.contr_mod_nbr
contr_nbr = :control.contr_nbr
contr_ref_mod_nbr = :contract.contr_ref_mod_nbr
entry_userid = user logged on
vendor_code = :obligation.vendor_code
date_of_award = :contract.date_of_award
disc_terms_code = :contract.disc_terms_code
ending_date = :contract.ending_date
fob_date = :contract.fob_date
ret_perc = :contract.ret_perc
ret_perc_doc_nbr = :contract.ret_perc_doc_nbr
tax_id = :contract.tax_id
contr_officer_rep = :contract.contr_officer_rep

(c) CMR_4480 table - DO NOT INSERT for Revolving Fund.
acpt_date = entry_date
adp_work_code = For Civil :obligation.adp_work_code. For Military first

10 digits of :obligation.adp_work_code.

amount = :obligation.amount
batch_nbr = Civil = 37, Military = 42.
civ_mil_rvolvg flag = :obligation.civ_mil_rvolvg_flag
dest ="A’
dist_code = ’4’
doc_nbr = :obligation.oblg_doc_nbr
interface_acpt_flag = 'I’
record_code = ’02’
trns_code = 'JA’

15

tms_type_indic = 'O’

item_code = Null

object_class_code = :obligation.object_class_code

org_code = For civil :obligation.org_code, military *00’

other_ref_nbr = null

pay_coll_code = For civil null. For Military if 2nd and 3rd positions of
obligation number are 47, 52, 92, 87 or 90 then ’1’ else '3’.

ref_doc_nbr = :obligation.comt_doc_nbr

trf_date = null

trmns_month = null

16

3.2 V3_INP

A. Program Name: V3_INP

B. Program Language: SQL*Forms

C. Purpose: Edit or adjust detail obligation information and create a transaction for COEMIS

update.

Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

QOutput: N/A

Abnormal Termination: N/A

Program Execution:

(1) Input Values:

(a) Obligation Document Number - Validate against OBLIGATION table.
Display message stating obligation does not exist. Provide a list values key to

L mmyg

display a list of valid obligation numbers. (User must enter the obligation number
or contract and contract mod number.)

(b) Contract Number - Validate against OBLIGATION table. Display a message
stating that the contract number is invalid. Provide a list values key to display
valid contract numbers and contract modification numbers. (User must enter the
obligation number or contract and contract mod number.)

(c) Contract Mod Number

(d) Vendor Code - Retrieved from OBLIGATION table based on obligation
number or contract and contract mod number. May be updated. Validate against
VENDOR table and display message stating vendor is invalid. Provide list values
key displaying list of valid vendors.

(¢) Vendor Address Code - Retrieved from VENDOR table based on vendor
code. May be updated. Validate against VENDOR_ADDR table and display
message stating vendor address code is invalid. Provide a list values key to
display valid address codes.

(f) Object Class Code - Retrieved from OBLIGATION table based on obligation

17

L

number or contract and contract mod number. May be edited. Validate against
OBJECT_CLASS_CODES table. Display message stating that object class code
is invalid. Provide a list values key to display a list of valid object class codes.
(g) Item Code - Retrieved from OBLIGATION table based on obligation number
or contract and contract mod number. May be edited. Validate against
ACCT_ELM_TYPE table. Display message stating invalid item code. Provide
list values key to display all valid item codes.
(h) Commitment Document Number - Retrieved from OBLIGATION table based
on obligation number or contract and contract mod number.
(i) Adjustment Amount - Amount obligation is to be adjusted. Validate that this
amount is not more than the obligation unliquidated balance and not exceeding the
contract amount.

(2) Display Values:
(a) Entry Date - Retrieved from OBLIGATION table based on obligation number
or contract and contract mod number.
(b) Vendor Name - Retrieved from VENDOR table based on vendor code.
(¢) Vendor Address - Retrieved from VENDOR_ADDR table based on vendor
address code.
(d) Vendor City - Retrieved from VENDOR_ADDR table based on vendor
address code.
(e) Vendor State - Retrieved from VENDOR_ADDR table based on vendor
address code.
(f) Vendor Zip - Retrieved from VENDOR_ADDR table based on vendor address
code.
(g) Vendor Country - Retrieved from VENDOR_ADDR table based on vendor
address code.
(h) ADP Work Code - Retrieved from OBLIGATION table based on obligation

number or contract and contract mod number.

18

(i) Net Unliquidated Balance - Retrieved from OBLIGATION table based on
obligation number or contract and contract mod number.
() Gross Amount - Amount retrieved from OBLIGATION table based on
obligation number or contract and contract mod number.
(3) Updates:
(a) OBLIGATION table
Amount = Amount + Adjustment Amount
Net Unliquidated Balance =
Net Unliquidated Balance + Adjustment Amount
(b) CONTRACT table - If record exists in contract table for contract number and
contract mod number then vendor code = :obligation.vendor_code.
(c) CMR_4480 table - ONLY UPDATE for Civil and Military. ONLY UPDATE
if adjustment amount is greater than zero.
Amount = Amount + Adjustment Amount where doc_nbr =
:obligation.oblg_doc_nbr and interface_acpt_flag = 'I’.
(4) Inserts:
(a) CMR_4480 table - DO NOT insert for Revolving Fund.
Insert if acpt_flag = "A’
acpt_date = sysdate
adp_work_code = For Civil :obligation.adp_work_code. For Military first
10 digits of :obligation.adp_work_code.
amount = :obligation.adjustment_amount
batch_nbr = Civil & Negative = 40, Civil & Positive = 37, Military &
Negative = 45, Military & Positive = 42
civ_mil_rvolvg_flag = :obligation.civ_mil_rvolvg_flag
dest = ’A’
dist_code = ’4’
doc_nbr = :obligation.oblg_doc_nbr
interface_acpt_flag = 'T’

19

record_code = '02’

trns_code = 'JA’
tms_type_indic = 'O’
item_code = null

object_class_code = :obligation.object_class_code

org_code = For Civil :obligation.org_code, Military *00’

other_ref_nbr = null

pay_coll_code = For Civil null. For Military if 2nd and 3rd positions of
obligation number are 47, 53, 92, 87 or 90 then '1’ else ’3’.

ref_doc_nbr = :obligation.comt_doc_nbr

trf_date = null

trns_month = null

20

3.3 V4_INP

A. Program Name: V4_INP

B. Program Language: SQL*Forms

PURPOSE: Display obligations by ADP work code.

Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

Program Execution:

(1) Input Values:
(a) ADP work code - Validate against OBLIGATION table. Display
message stating ADP work code is invalid.
(2) Display Values:

(a) Total Unliquidated Obligation - Sum net_unlig_bal from
OBLIGATION table based on the ADP work code entered.
(b) Obligation Number - Retrieve from OBLIGATION table based on
ADP work code entered. Provide a key to call screen V5 - Display
Obligations and Expenditures.
(c) Contract Number - Retrieve from OBLIGATION table based on ADP
work code entered.
(d) Contract Mod Number - Retrieve from OBLIGATION table based on
ADP work code entered.
(¢) Commitment Number - Retrieve from OBLIGATION table based on
ADP work code entered.
(f) Gross Obligation Amount - Retrieve amount from OBLIGATION table
based on ADP work code entered.
(g) Net Unliquidated Balance - Retrieve from OBLIGATION table based
on ADP work code entered.

I. Other Program Notes: Order by entry date.

mommEy o

21

34 V5_INP
A. Program Name: V5_INP
B. Program Language: SQL*Fcrms

C. Purpose:

Display obligations and expenditures.

D. Entry Point: Executed through VIS menu and called from V4 (Display Obligations by ADP

Work Code).

E. Input Data Requirements: N/A
F. Qutput: N/A

G. Abnormal Termination: N/A

H. Program Execution:
(1) Input Values:

(a) Obligation Document Number - Validate against OBLIGATION table.
Display message stating obligation does not exist. Provide a list values key to

display a valid list of obligation numbers.

(2) Display Values:

(a) ADP Work Code - Retrieve from OBLIGATION table based on obligation
number entered.

(b) Gross Obligation Amount - Retrieve amount from OBLIGATION table based
on obligation number entered.

(¢) Commitment Number - Retrieve from OBLIGATION table based on
obligation number entered.

(d) Contract Number - Retrieve from OBLIGATION table based on obligation
number entered.

(¢) Contract Mod Number - Retrieve from OBLIGATION table based on
obligation number entered.

() ADP Work Code - Retrieve from OBLIGATION table based on obligation
number entered.

(g) Net Unliquidated Balance - Retrieve from OBLIGATION table based on

obligation number entered.

22

(h) Vendor Code - Retrieve from OBLIGATION table based on obligation
number entered.

(i) Vendor Name - Retrieve from VENDOR table based on vendor code.

() Initiator - Retrieve from EMPLOYEE table based on init_entry_id in the
OBLIGATION table for the obligation number entered.

(k) Expenditure Number - Retrieve from EXPENDITURE table based on the
obligation number entered. Provide a key to call screen V39 - Display
expenditure information.

() Entry Date - Retrieve from EXPENDITURE table based on the obligation
number entered.

(m) Expenditure Amount - Retrieve from EXPENDITURE table based on the
obligation number entered.

(n) Scheduled Payment Date - Retrieve from EXPENDITURE table based on the
obligation number entered.

(o) Disbursement - Sum amount from DISBURSEMENT table for each
expenditure document number. If the expenditure has not been disbursed default
the disbursement amount to 0.00.

I. Other Program Notes: Order expenditure information by expenditure document number.

23

3.5 V8_INP

Program Name: V8_INP

Program Language: SQL*Forms
Purpose: Enter detail expenditure information and create a transaction for COEMIS update.

Entry Point: Executed through VIS menu.
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

- Q" mgowy

Program Execution:
(1) Input Values:
(a) Obligation Document Number - Validate against OBLIGATION table.
Display message stating obligation is invalid. (User must enter the obligation

number or contract and contract mod number.)

(b) Contract Number - Validate against OBLIGATION table. Display a message
stating that the contract number is invalid. (User must enter the obligation number
or contract and contract mod number.)

(c) Contract Mod Number

(d) Delivery Date - Default to the system date. Validate that delivery date is less
than or equal to the system date. Display message. Edit to see if delivery date
is less than or equal to the date of the obligation. Display a WARNING message
but continue processing.

(e) Acceptance Date - Default to the system date. Validate that the acceptance
date is equal to or greater than the delivery date. Display message.

(f) Description - Allow user to enter two lines of descriptions.

(g) Partial Final Flag - Only valid entries are P and F. Default to P. Check to
see if the partial final flag is set to F in the EXPENDITURE table for the
obligation entered. Display message stating final expenditure exists for this
obligation and no new expenditure is allowed.

(h) TBO Flag - Only valid entries are Y and N. Default to N. Validate that Y

24

is entered only for Military funding. Display message stating the source of funds
must be Military.
(i) DSSN Number - This field must be entered if the TBO flag is Y otherwise
do not allow this field to be entered.
() Cycle Number - This field must be entered if the TBO flag is Y otherwise do
not allow this field to be entered.
(k) Amount - The amount must not be greater than the obligation net
unliquidated balance. Display a message stating that this amount cannot exceed
the net unliquidated balance.

(2) Display values:
{a) Net Unliquidated Balance - Retrieved from OBLIGATION table based on
obligation number entered or contract and contract mod number entered.
(b) Object Class Code - Retrieved from OBLIGATION table based on obligation
number entered or contract and contract mod number entered.
(c) Item Code - Retrieved from OBLIGATION table based on obligation number
entered or contract and contract mod number e~tered.
(d) ADP Work Code - Retrieved from OBLIGATION table based on obligation
number entered or contract an.! contract mod number entered.
(¢) Vendor Code - Retrieved from OBLIGATION table based on obligation
number entered or contract and contract mod number entered.
(f) Vendor Name - Retrieved from VENDOR table based on vendor code.
(g) Organization Code - Retrieved from OBLIGATION table based on obligation
number entered or contract and contract mod number entered.
(h) Partial Pay Number - Retrieve max partial pay number from EXPENDITURE
tabled based on the obligation number and add 1 to it.

(3) Inserts:
(a) EXPENDITURE table

amount = :expenditure.amount

entry_date = sysdate

25

exp_doc_nbr = generate expenditure document number.
Ist position = F
2nd and 3rd positions = Fiscal month
4th and 5th positions = Fiscal year
6th - 9th positions = Generated sequence number (The sequence number
is generated by selecting the nextval from the EXPSEQ sequence)
init_entry_id = user logged on
oblg_doc_nbr = :obligation.oblg_doc_nbr
partial_final_flag = :expenditure.partial_final_flag
vendor_addr_code = :obligation.vendor_addr_code
vendor_code = :obligation.vendor_code
adp_work_code = :obligation.adp_work_code
status = 'C’
cycle_nbr = :expenditure.cycle_nbr
acpt_date = :expenditure.acpt_date
del_date = :expenditure.del_date
descrl = :expenditure.descrl
descr2 = :expenditure.descr2
disc_terms_code = null
dssn_nbr = :expenditure.dssn_nbr
inv_nbr = null
partial_pay_nbr = :expenditure.partial_pay_nbr
scheduled_paymnt_date = null
tbo_flag = :expenditure.tbo_flag
(b) CMR_4480 table - For Expenditure
acpt_date = entry_date
adp_work_code = :obligation.adp_work_code
batch_nbr = Civil = 55, Military = 60, Revolving = 47

civ_mil_rvolvg_flag = :obligation.civ_mil_rvolvg_flag

26

dest = A’
dist_code = ’4’
doc_nbr = generated :expenditure.exp_doc_nbr
interface_acpt_flag = I’
record_code = 02’
trns_code = Civil & Military - "MA’, Revolving - 'MD’
trns_type_indic = 'E’
item_code = :obligation.item_code
object_class_code = :obligation.object_class_code
org_code = :obligation.org_code
other_ref_nbr = null
pay_coll_code = For Civil null. For Military if 2nd and 3rd positions of

the obligation number are 47, 53, 92, 87, or 90 then ’1’ else ’3’.
ref_doc_nbr = For Civil & Military = :Obligation.oblg_Doc_nbr. Revolving

= null
trf_date = null
trns_month = null

(c) CMR_4480 table - Only insert if TBO flag = ’Y".
acpt_date = entry_date
adp_work_code = Retrieve adp_wc_d from D_F_FILE where adp_wc_g
= :Obligation.adp_work_code
amount = :expenditure.amount
batch_nbr = *86’
dist_code = ’4’
doc_nbr = Generate document number
1st position = K

2nd and 3rd positions = Fiscal month

4th - 9th positions = 022079
object_class_code = :Obligation.object_class_code

27

org_code =00’
record_code = 02’
ref_doc_nbr = :expenditure.exp_doc_nbr
interface_acpt_flag = 'I’
trns_code = 'PF’
civ_mil_rvolvg_flag = 'M’
tms_type_indic = 'B’
dest = A’
other_ref_nbr = generate reference document number
Ist and 2nd positions = :expenditure.cycle_nbr
3rd - 5th positions = 090
6th - 9th positions = :expenditure.dssn_nbr
pay_coll_code =1’
(d) DISBURSEMENT table - Only insert if TBO flag =Y’
amount = :expenditure.amount
disb_date = sysdate
disb_doc_nbr = generate disbursement number
1st position = K
2nd and 3rd positions = Fiscal month
4th - 9th positions = 022070
exp_doc_nbr = :expenditure.exp_doc_nbr
(4) Updates:
(a) OBLIGATION table
Net_unliq_bal = Net_unliq_bal - :Expenditure.amount

28

3.6 V9_INP
A. Program Name: V9_INP

B. Program Language: SQL*Forms
C. Purpose: Schedule expenditures for payment and create necessary transaction for COEMIS

update.

D. Entry Point: Executed through VIS menu.

E. Input Data Requirements: N/A

F. Qutput: N/A

G. Abnormal Termination: N/A

H. Program Execution:

(1) Input Values:
(a) Expenditure Document Number - Validate against EXPENDITURE table.
Display message stating expenditure is invalid. Provide a list values key to
display a list of valid expenditure document numbers. Provide a key to call V33 -
Enter Invoice. Check to make sure expenditure has not been previously
scheduled. Display message stating expenditure has already been scheduled.
(b) Description - Allow user to enter two lines of descriptions.
(c) Vendor Address Code - Validate against VENDOR_ADDR table. Display
message stating vendor address code is invalid. Provide a list values key to
display a list of valid vendor address codes.
(d) Partial Final Flag - Valid choices are P or F. Display message if invalid.
(e) Invoice Numecer - Calls screen V34 - Invoice lookup. Copy invoice number
from screen V33 which was called from the expenditure document number.
(H Vendor Tax ID
(g) Disbursement Amount
(h) Scheduled Payment Date
(i) Delivery Date
(j) Acceptance Date
(2) Display Values :

29

(a) ADP Work Code - Retrieve from EXPENDITURE table based on expenditure
number entered.
(b) Vendor Code - Retrieve from EXPENDITURE table based on expenditure
number entered.
(c) Vendor Name - Retrieve from VENDOR table based on vendor code.
(d) Vendor City - Retrieve from VENDOR_ADDR table based on vendor address
code.
(e) Vendor State - Retrieve from VENDOR_ADDR table based on vendor
address code.
(f) Vendor Zip - Retrieve from VENDOR_ADDR table based on vendor address
code.
(g) Vendor Country - Retrieve from VENDOR_ADDR table based on vendor
address code.
(h) Vendor Phone - Retrieve from VENDOR_ADDR table based on vendor
address code.
(i) Partial Pay Number - Retrieve from EXPENDITURE table based expenditure
number entered.
(3) Inserts: Validate the :Obligation.net_unliq_bal >= (:Expenditure.disb_amt -
:Expenditure.amount). Display message stating the obligation unliquidated balance may
not be exceeded.
(a) SCHEDULED_PAYMNT table
adp_work_code = Civil = 1st - 5th positions of
:expenditure.adp_work_code, 6th - 15th positions (zero filled)
Military = Retrieve adp_wc_d from D_F_FILE where
adp_wc_g = :expenditure.adp_work_code
Revolving = 1st and 2nd positions VW,
3rd - 15th positions (zero filled)
amount = :expenditure.disb_amt
exp_doc_nbr = :expenditure.exp_doc_nbr

30

init_entry_id = user logged on
loc_appn_nbr = :obligation.loc_appn_nbr
object_class_code = :obligation.object_class_code
scheduled_paymnt_date = :expenditure.scheduled_paymnt_date
status = 'C’
vendor_addr_code = :expenditure.vendor_addr_code
vendor_code = :expenditure.vendor_code
contr_mod_nbr = :obligation.contr_mod_nbr
contr_nbr = :obligation.contr_nbr
trns_date = entry_date
trnsf_date = null
(b) CMR_4480 table - DO NOT INSERT for Revolving Fund.
Only insert if interface_acpt_flag in CMR_4480 table is A’ for the expenditure
number entered.
acpt_date = sysdate
adp_work_code = :expenditure.adp_work_code
amount - :expenditure.disb_amt - :expenditure.amount
batch_nbr = Civil & Positive = 55
Military & Positive = 60
Civil & Negative = 56
Military & Negative = 61
civ_mil_rvolvg_flag = :obligation.adp_work_code
dest = A’
dist_code = ’4’
doc_nbr = :expenditure.exp_doc_nbr
interface_acpt_flag = 'I’
record_code = "02’
tms_code = "MA’
tms_type_indic = 'E’

31

item_code = :obligation.item_code
object_class_code = :obligation.object_class_code
org_code = :obligation.org_code
other_ref_nbr = null
pay_coll_code = For Civil null. For Military if 2nd and 3rd positions of
obligation number are 47, 52, 92, 87 or 90 then ’1’ else ’3’.
ref_doc_nbr = :obligation.oblg_doc_nbr
trf_date = null
trans_month = null
(4) Updates: Validate the :Obligation.net_unliq_bal >= (:Expenditure.disb_amt -
:Expenditure.amount). Display a message stating the obligation net unliquidated balance
may not be exceeded.
(a) OBLIGATION table
net_unliq_bal = net_unliq_bal - (:expenditure.disb_amt -
:expenditure.amount)
(b) EXPENDITURE table
descrl = :expenditure.descrl
descr2 = :expenditure.descr2
vendor_addr_code = :expenditure.vendor_addr_code
partial_final_flag = :expenditure.partial_final_flag
inv_nbr = :expenditure.inv_nbr
scheduled_paymnt_date = :expenditure.scheduled_paymnt_date
del_date = :expenditure.del_date
acpt_date = :expenditure.acpt_date
(c) CMR_4480 table - DO NOT UPDATE for Revolving Fund.
Only update if interface_acpt_flag is 'I' in CMR_4480 table for the expenditure
number entered.

amount = :expenditure.disb_amt

32

(d) VENDOR table
vendor_tax_id = :expenditure.vendor_tax_id

33

3.7 VIO_INP

Program Name: V10_inp

Program Language: SQL*Forms
Purpose: Cancel an expenditure and create transaction for COEMIS update.

Entry Point: Executed through VIS menu.
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

TomMmUNw®

Program Execution:
(1) Input Values:
(a) Expenditure Document Number - Validate against EXPENDITURE table.
Display message stating expenditure number is invalid. Validate against

EXPENDITURE table to insure expenditure has not previously been canceled.
Display message stating expenditure has already been canceled. Provide list of
values key to display a valid list of expenditure numbers to be canceled.
(b) Cancel Expenditure Flag - Ask the question do you want to cancel this
expenditure. Valid entries are Y or N. Only cancel i7 Y is entered.
(c) Description - Allow user to enter one line of description.

(2) Display Values:
(a) Vendor Name - Retrieve from VENDOR table based on vendor code from
EXPENDITURE table.
(b) ADP Work Code - Retrieve from EXPENDITURE table based on expenditure
number entered.
(c) Amount - Retrieve from EXPENDITURE table based on expenditure number
entered.
(d) New Expenditure Number - Generate new expenditure number for revolving
fund if expenditure entered has already gone to COEMIS.

(3) Inserts:
(a) CMR_4480 table - ONLY INSERT if the interface_acpt_flag is 'A’ for the

34

expenditure number entered. If Revolving, then a new expenditure document
number must be generated.

acpt_date = sysdate

adp_work_code = Civil & Military = :expenditure.adp_work_code,
Revolving = *VW0000000000000’

amount = (-:Expenditure.amount)

batch_nbr = Civil = ’52°, Military = ’57’, Revolving = ’50’

civ_mil_rvolvg flag = :expenditure.civ_mil_rvolvg_flag

dest =A’

dist_code = ’4’

doc_nbr = Civil & Military = :expenditure.exp_doc_nbr, Revolving =

:expenditure.new_exp_doc_nbr

interface_acpt_flag = 'I’

record_code = "0’

tms_code = T 1 & Military = "MA’, Revolving = "MC’

trns_typ:_indic = 'E’

item_code = :obligation.item_code

object_class_code = :obligation.object_class_code

org_code = :obligation.org_code

pay_coll_code = For Civil null. For Military & Revolving if 2nd and 3rd
positions of obligation number are 47, 52, 92, 87 or 90 then ’1’
else '3,

ref_doc_nbr = Civil & Military = :obligation.oblg_doc_nbr, Revolving =

:expenditure.exp_doc_nbr

trf_date = null
trns_month = null
(4) Updates:

(a) OBLIGATION table

net_unliq_bal = net_unliq_bal + :expenditure.amount

35

(b) CMR_4480 table - ONLY UPDATE if the interface_acpt_flag = "I’ for the
expenditure number entered.
(¢) EXPENDITURE table

amount = '0.00’

status = "X’

36

3.8 VI11_INP

ZomMmyYUOw >

Program Name: VI11_INP

Program Language: SQL*Forms
Purpose: Establish and edit recurring expenditure.

Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

Program Execution:

(1) Input Values:
(a) Contract Number - Validate against OBLIGATION table that the contract and
contract mod number entered references a valid obligation. Display message
stating that contract and mod number does not reference an obligation. (User must
enter contract and contract mod number.)
(b) Contract Mod Number - (User must enter contract and contract mod number.)
(c) Description - Allow user to enter two lines of descriptions.
(d) Start Date - Edit to make sure the start date is greater than or equal to the
system date. Display message.
(e) Expiration Date - Edit to make sure the expiration date is greater than or
equal to the start date. Display message.
(f) Number of Payments
(g) Payment Period
(h) Incremental Expenditure Amount - Validate that the amount is less than or
equal to the net unliquidated obligation balance.
(1) Status - Valid entries are A for active or I for inactive. Display message.
(2) Display Values:

(a) Obligation number - Retrieved from OBLIGATION table based on contract
and contract mod number entered.
{b) Net Unliquidated Balance - Retrieved from OBLIGATION table based on

37

contract and contract mod number entered.
(c) Object Class Code - Retrieved from OBLIGATION table based on contract
and contract mod number entered.
(d) Item Code - Retrieved from OBLIGATION table based on contract and
contract mod number entered.
(e) Vendor Code - Retrieved from OBLIGATION table based on contract and
contract mod number entered.
(f) Vendor Name - Retrieved from VENDOR table based on vendor code.
(g) Vendor Address Code - Retrieved from OBLIGATION table based on
contract and contract mod number entered.
(h) ADP Work Code - Retrieved from OBLIGATION table based on contract and
contract mod number entered.
(i) Vendor Address - Retrieved from VENDOR_ADDR table based on vendor
address code.
() Vendor City - Retrieved from VENDOR_ADDR table based on vendor
address code.
(k) Vendor State - Retrieved from VENDOR_ADDR table based on vendor
address code.
(1) Vendor Zip - Retrieved from VENDOR_ADDR table based on vendor address
code.
(m) Vendor Country - Retrieved from VENDOR_ADDR table based on vendor
address code.
(n) Vendor Phone - Retrieved from VENDOR_ADDR table based on vendor
address code.

(3) Inserts:
(a) RECURRING_EXP table
amount = :recurring_exp.amount
contr_mod_nbr = :obligation.contr_mod_nbr

contr_nbr = :obligation.contr_nbr

38

entry_date = sysdate

expr_date = :recurring_exp.expr_date
init_entry_id = user logged on

item_code = :obligation.item_code

no_paymnts = :Tecurring_exp.no_paymnts
object_class_code = :obligation.object_class_code
oblg_doc_nbr = :obligation.oblg_doc_nbr
paymnt_period = :recurring_exp.paymnt_period
start_date = :recurring_exp.start_date

status = :recurring_exp.status

vendor_addr_code = :obligation.vendor_addr_code
adp_work_code = :obligation.adp_work_code
descrl = :recurring_exp.descrl

descr2 = :recurring_exp.descr2

next_exp_date = :recurring_exp.start_date

39

39 VI2_INP
Program Name: V12_INP
Program Language: SQL*Forms

Purnose: Lookup valid object class codes and descriptions.

Entry Point: Called from V1 (Create Obligation) and V3 (Edit/Adjust Obligation).
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

ZoOmMmUOow >

Program Execution: Select and display records containing the object class code and
description from the OBJECT_CLASS_CODES table based on the Civil, Military, Revolving flag
that is passed from the calling form. If the Civil, Military, Revolving flag = ’C’ and Civil flag
=Y’ in the OBJECT_CLASS_CODES table, then display the Civil object class codes. If the
Civil, Military, Revolving flag = "M’ and Military flag = "Y" in the OBJECT_CLASS_CODES
table, then display the Military object class codes. If the Civil, Military, Revolving flag = 'R’
and Revolving flag = *Y’ in the OBJECT_CLASS_CODES table, then display the Revolving
Fund object class codes. The records are ordered by the object class code.

Once records are retrieved and displayed, the user can pick an object class code from the

list of valid codes. The object class code and description are passed to the calling form.

40

3.10 V14_INP
Program Name: V14_INP

Program Language: SQL*Forms
Purpose: Lookup valid organization codes based on the organization name.

Entry Point: Called from V1 (Create Obligation) and V3 (Edit/Adjust Obligation).
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

Z oM mY oDy

Program Execution: Prompt user to enter all or a portion of the organization name to be
found. Select and display the organization name and organization code from the
ORGANIZATION table based on the organization name entered.

Once records are retrieved and displayed, the user can pick an organization code from the list

of valid codes. The organization code is passed to the calling form.

41

3.11 V15_INP
A. Program Name: V15_INP

B. Program Language: SQL*Forms
C. Purpose: Lookup valid item codes and descriptions.

D. Entry Point: Called from V1 (Create Obligation), and V3 (Edit/Adjust Obligation). E.
Input Data Requirements: N/A
F. Output: N/A
G. Abnormal Termination: N/A
H. Program Execution: Prompt user to enter all or a portion of the item code to be found.
Select and display the item code and description from the ACCT_ELM_TYPE table based on the
item code entered.

Once records are retrieved and displayed, the user can pick an item code from the list of valid
codes. The item code is passed to the calling form.

42

3.12 V16_INP

A. Program Name: V16_INP

B. Program Language: SQL*Forms

C. Purpose: Lookup valid vendor codes based on the vendor name.

D. Entry Point: Called from V1 (Create Obligation), V3 (Edit/Adjust Obligations), V19
(Lookup Valid Contract Numbers), V30 (Vendor Expenditure Lookup), V40 (Display Obligations
by Vendor), and MVEND (Maintain Vendors and Vendor Address Information).

E. Input Data Requirements: N/A

F. QOutput: N/A

G. Abnormal Termination: N/A

H. Program Execution: Prompt user to enter all or a portion of the vendor name to be found.
Select and display the vendor code and vendor name from the VENDOR table based on the
vendor name entered.

Once records are retrieved and displayed, the user can pick a vendor code from the list of

valid codes. The vendor code and vendor name are passed to the calling form.

3.13 V17_INP

A. Program Name: V17_INP

B. Program Language: SQL*Forms

C. Purpose: Lookup valid vendor address information.

D. Entry Point: Called from V1 (Create Obligation), V3 (Edit/Adjust Obligations), and V9

(Scheduled Payments).

E. Input Data Requirements: N/A

F. Qutput: N/A

G. Abnormal Termination: N/A

H. Program Execution: Prompt user to enter the vendor code or the calling form passes the

vendor code. Select and display the vendor code and vendor name from the VENDOR table

based on the vendor code entered or passed. Also select and display the vendor address code,

vendor address1, vendor address2, vendor city, vendor country, vendor state, vendor zipcode, and

vendor phone from the VENDOR_ADDR table based on the vendor code entered or passed.
Once records are retrieved and displayed, the user can pick a vendor address code from the

list of valid codes. If called from a form, the vendor address code is passed to the calling form.

3.14 VI18_INP

A. Program Name: VI18_INP

B. Program Language: SQL*Forms
C. Purpose: Lookup valid obligation document numbers for a specific user.

D. Entry Point: Called from V3 (Edi/Adjust Obligation) and V5 (Display Obligations and
Expenditures).
E. Input Data Requirements: N/A
F. Output: N/A
G. Abnormal Termination: N/A
H. Program Execution: Select and display obligation document number, initial entry date, and
obligation amount from the OBLIGATION table. Select and display the initiator’s name by
matching the userid of the user to the userid in the EMPLOYEE table.

Once records are retrieved and displayed, the user can pick the appropriate obligation

document number. This obligation document number is passed to the calling form.

45

3.15 VI19_INP
A. Program Name: V19_INP
B. Program Language: SQL*Forms
C. Purpose: Lookup valid contract numbers.
D. Entry Point: Called from V3 (Edit/Adjust Obligations), and V46 (Display Contract
Information).
E. Input Data Requirements: N/A
F. Output: N/A
G. Abnormal Termination: N/A
H. Program Execution: Prompt user to enter all or a portion of the vendor code. Select and
display the vendor code and vendor name from the VENDOR table based on the vendor code
entered. Provide a lookup of vendors. Also select and display records containing the contract
number and contract modification number from the CONTRACT table where the vendor code
matches the vendor code entered. Order records by contract number, and contract modification
number. Also determine whether the record is a cost or no-cost mod by checking to see of the
contract and contract modification numbers exist in the OBLIGATION table. If they exist in the
OBLIGATION table, display a 'Y’ (Yes) otherwise display a "N’ (No).

Once records are retrieved and displayed, the user can select a contract number from the valid
list. If called from a form, the contract number and contract modification number are passed to
the calling form.

46

3.16 V20_INP
Program Name: V20_INP

Program Language: SQL*Forms
Purpose: Lookup valid discount terms.
Entry Point: Called from V1 (Create Obligation) and V33 (Enter Invoice Information).

Input Data Requirements: N/A
Output: N/A
Abnormal Termination: N/A
Program Execution: Select and display all records containing the discount terms code,
percent, and discount days from the DISC_TERMS table.
Once records are retrieved and displayed, the user can pick the appropriate discount terms.

T ommo oW

This discount terms code is passed to the calling form.

47

3.17 V24_INP

Program Name: V24_INP

Program Language: SQL*Forms
Purpose: Edit rejected travel expenditures.
Entry Point: Executed through VIS menu.

fnput Data Requirements: N/A
Qutput: N/A

oMMy oWy

Abnormal Termination: N/A

H. Program Execution: User can select an obligation from a list of travel obligations (V32)
or enter an obligation to be edited. A record is displayed containing the obligation document
number, vendor code, expenditure amount, and acceptance flag from the TRAVEL_EXP table
where the acceptance flag = 'R’ (Rejected), and the obligation document number in the
TRAVEL_EXP table matches the obligation document number entered.

User can update the obligation document number, vendor code, expenditure amount and
acceptance flag. If the vendor code is updated it is validated against the VENDOR table. If the
expenditure amount is updated, the system checks to make sure that the expenditure amount is
less than or equal to the net unliquidated balance of the obligation. If the acceptance flag is
updated, the only valid values are 'I’ (In progress) and 'R’ (Rejected).

48

18 V25_INP

. Program Name: V25_INP

. Program Language: SQL*Forms
. Purpose: Cancel disbursements.

3.
A
B
C
D. Entry Point: Executed through VIS menu.
E. Input Data Requirements: N/A

F. Qutput: N/A

G. Abnormal Termination: N/A

H

Program Execution: Prompt user to enter an expenditure document number for the

disbursement to be canceled. A disbursement can be canceled only if the expenditure has not
been canceled and the transfer date is null. Select and display the description, scheduled payment
date, adp work code, contract number, contract modification number, vendor code, vendor name,
and disbursement amount from the EXPENDITURE, SCHEDULED_PAYMNT, and VENDOR
tables where the expenditure document number entered matches the expenditure document
number in the EXPENDITURE and SCHEDULED_PAYMNT tables and the vendor code in the
EXPENDITURE tabie matches the vendor code in the VENDOR table. The user is asked *Do
you want to cancel this disbursement?:’. If *Y’ (Yes), set the scheduled payment date = null,
invoice number = null, status = ’C’ in the EXPENDITURE table where the expenditure document

number matches the expenditure document number entered.

49

3.19 V26_INP
Program Name: V26_INP

Program Language: SQL*Forms

Purpose: Review scheduled payment transactions by date.
Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

QOutput: N/A

Abnormal Termination: N/A

T QMmoo wy

Program Execution: Prompt user to enter the scheduled payment date of transactions to be
reviewed. Select records containing the expenditure document number, adp work code, amount,
local appropriation number, contract number, contract modification number, initial entry id, object
class code, vendor name, vendor address code, vendor addressl, vendor address2, vendor city,
vendor state, and vendor zipcode from the SCHEDULED_PAYMNT, VENDOR, and
VENDOR_ADDR tables where the scheduled payment date in the SCHEDULED_PAYMNT
table matches the scheduled payment date entered, the vendor code in the
SCHEDULE_PAYMNT table matches the vendor code in the VENDOR table, and the vendor
address code in the SCHEDULED_PAYMNT table matches the vendor address code in the

VENDOR_ADDR table.

50

3.20 V30_INP
Program Name: V30_INP

Program Language: SQL*Forms

Purpose: Lookup obligation and expenditure information for a specific vendor.
Entry Point: Called from V9 (Scheduled Payments).

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

L Q™M mogow»

Program Execution: Prompt user to enter the vendor code. Select and display the vendor
name from the VENDOR table based on the vendor code entered. Provide a lookup of vendors.
Select and display records containing the expenditure document number, obligation document
number, contract number, contract modification number, and amount from the EXPENDITURE
and OBLIGATION tables. The expenditure document number, obligation document number and
amount are retrieved from the EXPENDITURE table based on the vendor code entered and where
the scheduled payment date is null. The contract number and contract modification number are
retrieved from the OBLIGATION table based on the obligation document number retrieved from
the EXPENDITURE table. Once records are retrieved and displayed, the user can pick an
expenditure document number from the list of available documents. The expenditure document

number is passed to the calling form.

51

3.21 V32_INP

Program Name: V32_INP

Program Language: SQL*Forms

Purpose: Lookup rejected travel obligations.

Entry Point: Called from V24 (Edit Travel Expenditures).
Input Data Requirements: N/A

Output: N/A
Abnormal Termination: N/A
Program Execution: Select and display records containing the obligation document number,

vendor code, expenditure amount, and net unliquidated balance from the TRAVEL_EXP and

v QO m Mmoo w

OBLIGATION tables. The obligation document number, vendor code and expenditure amount
are selected from the TRAVEL_EXP table where the acceptance flag = 'R’. The net unliquidated
balance is selected from the OBLIGATION table based on the obligation document numbers
retrieved from the TRAVEL_EXP table.

Once records are retrieved and displayed, the user can pick the appropriate obligation

document number. This obligation document number is passed to the calling form.

52

3.22 V33_INP

Program Name: V33_INP

Program Language: SQL*Forms

Purpose: Enter or edit invoice detail information.
Entry Point: Called from V9 (Scheduled Payments).
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

T QMmoo

Program Execution: Prompt user to enter an invoice number. The vendor code is passed
from the calling form. Check to see if the invoice exists by selecting from the INVOICE table

where the vendor code matches the vendor code passed and the invoice number matches the
invoice number entered. If the invoice already exists, user cannot edit.
1. Input values:
(a) Invoice Date - invoice date must be less than or equal to the system date.
(b) Invoice Due Date - due date must be greater than or equal to the invoice date.
(c) Invoice Receipt Date - receipt date must be greater than or equal to the invoice date
and less than or equal to the system date.
(d) Invoice Terms Code - invoice terms are validated against the DISC_TERMS table.
(e) Gross Amount
(f) Earnings Period Start Date - start date must be less than the system date.
(g) Eamnings Period Stop Date - stop date must be less than the system date and greater
than the earnings start date.
(h) Prompt Payment Flag - Y (Yes) or N (No) are the only valid entries.
2. Display values:
(a) Discount Percent - selected from DISC_TERMS table based on the invoice terms
code entered.
(b) Discount Days - selected from DISC_TERMS table based on the invoice terms code
entered.

53

3. Inserts:
Insert into the invoice table the vendor code, invoice number, invoice date, invoice due
date, invoice receipt date, discount terms code, gross amount, earnings period start date, earnings
period stop date, prompt payment flag, and initial entry id.

4. The invoice number is passed to the calling form.

54

3.23 V34_INP

Program Name: V34_INP

Program Language: SQL*Forms

Purpose: Lookup invoice information.

Entry Point: Called from V9 (Scheduled Payments).

Input Data Requirements: N/A

Output: N/A

G. Abnormal Termination: N/A

H. Program Execution: The vendor code is passed from the calling form. Select and display
all records containing the invoice number, vendor code, and amount from the INVOICE table

Mo ow»

based on the vendor code that was passed from the calling form.
Once records are retrieved and displayed, the user can select a particular invoice from the

valid list. The invoice number and vendor code are passed back to the calling form.

35

3.24 V37_INP

A. Program Name: V37_INP
B. Program Language: SQL*Forms
C. Purpose: Lookup expenditure information
D. Entry Point: Called from V10 (Cancel Expenditure).
E. Input Data Requirements: N/A
F. Qutput: N/A
G. Abnormal Termination: N/A
H. Program Execution: Select and display records containing the expenditure document
number and amount. Order records by the entry date of the expenditure.
Once records are retrieved and displayed, the user can pick an expenditure document number
from the list of available documents. The expenditure document number is passed to the calling

form.

56

3.25 V39_INP
A. Program Name: V39_INP
B. Program Language: SQL*Forms

C. Purpose: Display expenditure information for a specific expenditure document.
D. Entry Point: Executed through VIS menu. Called from V5 (Display Obligations and
Expenditures).

E. Input Data Requirements: N/A
F. Qutput: N/A

G. Abnormal Termination: N/A
H. Program Execution: Prompt user to enter the expenditure document number or the calling
form passes the expenditure document number. Select and display the obligation document
number, net unliquidated balance, adp work code, object class code, item code, vendor code,
contract number, and contract modification number from the OBLIGATION table based on the
obligation number selected from the EXPENDITURE table for the expenditure document number
entered.

Select and display the vendor name from the VENDOR table based on the vendor code
retrieved from the OBLIGATION table.

Select and display the description, partial/final flag, partial pay number, TBO flag, dssn

number, cycle number, delivery date, acceptance date, expenditure amount, scheduled payment
date, and invoice number from the EXPENDITURE table based on the expenditure document
number entered.

Select and display the employee name from the EMPLOYEE table based on the initial entry
id retrieved from the EXPENDITURE table.

Select and display the check number, and DOV number from the DISBURSEMENT table
based on the expenditure document number entered.

3.26 V40_INP

Program Name: V40_INP

Program Language: SQL*Forms
Purpose: Display obligations for a specific vendor.

Entry Point: Executed through VIS menu.
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

L QMmoo w»

Program Execution: Prompt user to enter the vendor code. Select and display the vendor
name from the VENDOR table based on the vendor code entered. Provide a lookup of vendors.
Select and display records containing the obligation document number, commitment document
number, contract number, contract modification number, amount and net unliquidated balance
from the OBLIGATION table where the vendor code entered matches the vendor code in the
OBLIGATION table.

Once records are retrieved and displayed the user can select a specific obligation document
and look at expenditure information through V5 (Display Obligations and Expenditures).

58

3.27 V41_INP

Program Name: V41_INP

Program Language: SQL*Forms
Purpose: Edit automatic scheduling transactions that have been rejected.

Entry Point: Executed through VIS menu.
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

T ommouow»

Program Execution: Prompt user to enter an obligation to be edited. A record is displayed

containing the obligation document number, vendor code, expenditure amount, and acceptance
flag from the AUTO_SCHED table where the acceptance flag = 'R’ (Rejected), and the
obligation document number in the AUTO_SCHED table matches the obligation document
number entered.

User can update the obligation document number, vendor code, expenditure amount and
acceptance flag. If the vendor code is updated it is validated against the VENDOR table. The
acceptance flag is set to 'I’ (in progress) and the record is updated to the AUTO_SCHED table.

59

3.28 V43_INP

Program Name: V43_INP

Program Language: SQL*Forms
Purpose: Adjust expenditure amount for a specific expenditure document.

Entry Point: Executed through VIS menu.
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

TomMmYU oW »

Program Execution: Prompt user to enter an expenditure document number to be adjusted.
Select and display the description, expenditure amount, and vendor code from the
EXPENDITURE table based on the expenditure document number entered and where the status
is not equal to X’ (Canceled). Select and display the obligation document number, net
unliquidated balance, adp work code, and vendor code from the OBLIGATION table based on
the obligation document number retrieved from the EXPENDITURE table. Select and display
the vendor name from the VENDOR table based on the vendor code retrieved from the
OBLIGATION table. Select and display the disbursement amount from the DISBURSEMENT
table based on the expenditure document number entered.

Prompt user to enter the adjustment amount. Check to make sure the amount of the
adjustment + the expenditure amount is greater than or equal to 0. Also check to make sure the
adjustment amount has not exceeded the net unliquidated balance for the obligation. If
adjustment amount meets the above criteria, update the net unliquidated balance in the
OBLIGATION table by the amount of the adjustment.

If the interface acceptance flag = 'I’ (in progress) in the CMR_4480 table for the expenditure
document number being adjusted, update CMR_4480 and set the amount = amount + adjustment
amount.

If the interface acceptance flag <> ’I’ then insert a record into the CMR_4480 table for the
expenditure document number only if Civil or Military. Insert into CMR_4480 the following:
1. acceptance date = sysdate

2. adp work code = adp work code from EXPENDITURE table

60

3. amount = adjustment amount
4. batch number =
Civil & Positive = 55
Civil & Negative = 52
Military & Positive = 60
Military & Negative = 57
5. district code = 4’
6. document number = expenditure document number
7. item code = item code from OBLIGATION table
8. object class code = object class code from OBLIGATION table
9. organization code = organization code from OBLIGATION table
10. pay collect code =
Civil = null
Military or Revolving Fund =
If 2nd and 3rd posidons of the obligation document number = 47°,’52°,’87°,°90°,’92",
the pay collect code = *3’ else the pay collect code =1’
11. record code = 02’
12. reference document number = obligation document number
13. interface acceptance flag = "I’ (in progress)
14. transaction code = "MA’
15. civil, military, revolving flag =
Civil = °C’, Military = "M’, Revolving Fund = 'R’
16. transaction type indicator = 'E’ (Expenditure)
17. destination = 'A’ (Accounting system)

61

3.29 V46_INP

Program Name: V46_INP

Program Language: SQL*Forms
Purpose: View contract information.
Entry Point: Executed through VIS menu.
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

- O mmUoow»

Program Execution: Prompt user to enter the contract number. Provide a lookup of valid
contracts. Select records containing contract modification number, obligation document number,
obligation amount, net unliquidated balance, adp work code, commitment document number, and
entry date from the OBLIGATION table based on the contract number entered. Select the vendor
name from the VENDOR table based on the vendor code retrieved in the OBLIGATION table.

Once records are retrieved and displayed, the user can call V5 (Display Obligations and
Expenditures) for more detailed information.

62

3.30 V47_INP

A. Program Name: V47_INP

B. Program Language: SQL*Forms

C. Purpose: Enter detail retained percent document information and create a transaction for

COEMIS update.

D. Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

Program Execution:

(1) Input Values:

(a) Obligation Document Number - Validate against OBLIGATION table.
Display message stating obligation is invalid. Validate against CONTRACT table

Lo mm

that a retained percent document number does not already exist. If one exists
display a message stating retained percent document number already exists. (User
must enter the obligation number or contract and contract mod number.)

(b) Contract Number - Validate against OBLIGATION table. Display a message
stating that the contract number is invalid. Validate against CONTRACT table
that a retained percent document number does not already exist. If one exists
display a message stating retained percent document number already exists. (User
must enter the obligation number or contract and contract mod number.)

(c) Contract Mod Number

(d) Delivery Date - Default to the system date. Validate that delivery date is less
than or equal to the system date. Display message. Edit to see if delivery date
is less than or equal to the date of the obligation. Display a WARNING message
but continue processing.

(¢) Acceptance Date - Default to the system date. Validate that the acceptance
date is equal to or greater than the delivery date. Display message.

(f) Description - Allow user to enter two lines of descriptions.

63

(g) Partial Final Flag - Only valid entries are P and F. Default to P. Check to
see if the partial final flag is set to F in the EXPENDITURE table for the
obligation entered. Display message stating final expenditure exists for this
obligation and no new expenditure is allowed.
(h) TBO Flag - Only valid entries are Y and N. Default to N. Validate that Y
is entered only for Military funding. Display message stating the source of funds
must be Military.
(i) DSSN Number - This field must be entered if the TBO flag is Y otherwise
do not allow this field to be entered.
(G) Cycle Number - This field must be entered if the TBO flag is Y otherwise do
not allow this field to be entered.
(k) Amount - The amount must not be greater than the obligation net
unliquidated balance. Display a message stating that this amount cannot exceed
the net unliquidated balance.

(2) Display values:
(a) Net Unliquidated Balance - Retrieved from OBLIGATION table based on
obligation number entered or contract and contract mod number entered.
(b) Object Class Code - Retrieved from OBLIGATION table based on obligation
number entered or contract and contract mod number entered.
(c) Item Code - Retrieved from OBLIGATION table based on obligation number
entered or contract and contract mod number entered.
(d) ADP Work Code - Retrieved from OBLIGATION table based on obligation
number entered or contract and contract mod number entered.
(e) Vendor Code - Retrieved from OBLIGATION table based on obligation
number entered or contract and contract mod number entered.
(f) Vendor Name - Retrieved from VENDOR table based on vendor code.
(g) Organization Code - Retrieved from OBLIGATION table based on obligation
number entered or contract and contract mod number entered.
(h) Partial Pay Number - Retrieve max partial pay number from EXPENDITURE

64

tabled based on the obligation number and add 1 to it.
(3) Inserts:
(a) EXPENDITURE table
amount = :expenditure.amount
entry_date = sysdate
exp_doc_nbr = generate expenditure document number.
1st position = F
2nd and 3rd positions = Fiscal month
4th and 5th positions = Fiscal year
6th - 9th positions = Generated sequence number (The sequence number
is generated by selecting the nextval from the EXPSEQ sequence).
init_entry_id = user logged on
oblg_doc_nbr = :obligation.oblg_doc_nbr
partial_final_flag = :expenditure.partial_final_flag
vendor_addr_code = :obligation.vendor_addr_code
vendor_code = :obligation.vendor_code
adp_work_code = :obligation.adp_work_code
status = 'C’
cycle_nbr = :expenditure.cycle_nbr
acpt_date = :expenditure.acpt_date
del_date = :expenditure.del_date
descrl = :expenditure.descrl
descr2 = :expenditure.descr2
disc_terms_code = null
dssn_nbr = :expenditure.dssn_nbr
inv_nbr = null
partial_pay_nbr = :expenditure.partial_pay_nbr
scheduled_paymnt_date = null
tbo_flag - :expenditure.tbo_flag

65

(b) CMR_4480 table - For Expenditure

acrt_date = sysdate

adp_work_code = :obligation.adp_work_code

batch_nbr = Civil = 35, Military = 60, Revolving = 47

civ_mil_rvolvg_flag = :obligation.civ_mil_rvolvg_flag

dest = A’

dist_code = '4’

doc_nbr = generated :expenditure.exp_doc_nbr

interface_acpt_flag = 'I’

record_code = ’02’

trns_code = Civil = '"MA’, Military = "ME’, Revolving = "MD’

ts_type_indic = 'E’

item_code = :obligation.item_code

object_class_code = :obligation.object_class_code

org_code = :obligation.org_code

other_ref_nbr = null

pay_coll_code = For Civil null. For Military if 2nd and 3rd positions of
the obligation number are 47, 53, 92, 87, or 90 then ’1’ else ’3’.

ref_doc_nbr = For Civil & Military = :obligation.oblg_doc_nbr,
For Revolving = null
trf_date = null
tms_month = null
(c) CMR_4480 table - Only insert if TBO flag = ’Y".
acpt_date = sysdate
adp_work_code = retrieve adp_wc_d from D_F_FILE where adp_wc_g
= :obligation.adp_work_code
amount = :expenditure.amount
batch_nbr = 86’

66

dist_code = ’4’
doc_nbr = generate document number
Ist position = K
2nd and 3rd positions = Fiscal month
4th - 9th positions = 022079
object_class_code = :obligation.object_class_code
org_code = '00’
record_code = 02’
ref_doc_nbr = :expenditure.exp_doc_nor
interface_acpt_flag = I’
trns_code = 'PF’
civ_mil_rvolvg_flag = 'M’
trns_type_indic = B’
dest = "A’
other_ref_nbr = Generate reference document number
1st and 2nd positions = :Expenditure.cycle_nbr
3rd - 5th positions = 090
6th - 9th positions = :Expenditure.dssn_nbr
pay_coll_code =1’
(d) DISBURSEMENT table - Only insert if TBO flag = 'Y’
amount = :expenditure.amount
disb_date = sysdate
disb_doc_nbr = generate Disbursement Number
Ist position = K
2nd and 3rd positions = Fiscal month
4th - 9th positions = 022070
exp_doc_nbr = :expenditure.exp_doc_nbr
(4) Updates:
(a) OBLIGATION table

67

net_unliq_bal = net_unliq_bal - :expenditure.amount
(b) CONTRACT table

ret_perc_doc_nbr = :expenditure.exp_doc_nbr

68

3.31 V48_INP
Program Name: V48_INP

Program Language: SQL*Forms

Purpose: Adjust expenditure amount for a specific retained percent document.
Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

T mmoow e

Program Execution: Prompt user to enter an expenditure document number to be adjusted.
Select and display the description, expenditure amount, and vendor code from the
EXPENDITURE table based on the expenditure document number entered and where the status
is not equal to 'X’ (Canceled). Select and display the obligation document number, net
unliquidated balance, adp work code, and vendor code from the OBLIGATION table based on
the obligation document number retrieved from the EXPENDITURE table. Select and display
the vendor name from the VENDOR table based on the vendor code retrieved from the
OBLIGATION table. Select and display the disbursement amount from the DISBURSEMENT
table based on the expenditure document number entered.

Prompt user to enter the adjustment amount. Check to make sure the amount of the
adjustment + the expenditure amount is greater than or equal to 0. Also check to make sure the
adjustment amount has not exceeded the net unliquidated balance for the obligation. If
adjustment amount meets the above criteria, update the net unliquidated balance in the
OBLIGATION table by the amount of the adjustment.

If the interface acceptance flag = "I’ (in progress) in the CMR_4480 table for the expenditure
document number being adjusted, update CMR_4480 and set the amount = amount + adjustment
amount.

If the interface acceptance flag <> ’'I’ then insert a record into the CMR_4480 table for the
expenditure document number only if Civil or Military. Insert into CMR_4480 the following:
1. acceptance date = sysdate

2. adp work code = adp work code from EXPENDITURE table

69

3. amount = adjustment amount
4. batch number =
Civil & Positive = 55
Civil & Negative = 52
Military & Positive = 60
Military & Negative = 57

5. district code = '4’
6. document number = expenditure document number
7. item code = item code from OBLIGATION table
8. object class code = object class code from OBLIGATION table
9. organization code = organization code from OBLIGATION table
10. pay collect code =

Civil = null

Military or Revolving Fund =

If 2nd and 3rd positions of the obligation document number = ’47°,’52",’87°,°90°,’92’,
the pay collect code = *3’ else the pay collect code =1’
11. record code = 02’
12. reference document number = obligation document number
13. interface acceptance flag = I’ (in progress)
14. transaction code =
Civil = '"MA’, Military = 'ME’
15. civil, military, revolving flag =
Civil = ’'C’, Military = 'M’, Revolving Fund = 'R’
16. transaction type indicator = "E’ (Expenditure)
17. destination = 'A’ (Accounting system)

70

3.32 MAET_INP

Program Name: MAET_INP

Program Language: SQL*Forms

Purpose: Maintain the accounting element type table.
Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

mommy oW

Program Execution: Prompt user to enter all or a portion of the item code to be entered
or edited. Check to see if the item code already exists in the ACCT_ELM_TYPE table.

If already exists, allow user to modify the item code description, civil flag, military flag, and
revolving flag. Update the ACCT_ELM_TYPE table with the new changes.

If item code does not exist, the new item code must be in the range between '001° and '499°.
Provide user a create record key to add a new item code to the ACCT_ELM_TYPE table. Allow
user to enter the description and the appropriate civil flag, military flag, and revolving flag. The
only valid entries for the flags are 'Y’ (Yes) or null. Insert the record into the
ACCT_ELM_TYPE table.

71

33 MAPP_INP
. Program Name: MAPP_INP

. Program Language: SQL*Forms
. Purpose: Maintain the appropriation table.

. Input Data Requirements: N/A

. Output: N/A

. Abnormal Termination: N/A

Program Execution: Query and display the civil, military, revolving flag, local

appropriation number, and description for all records in the APPROPRIATION table. If editing,
allow user to scroll up or down to the appropriate record and edit the appropriation title. Update
the changes to the APPROPRIATION table. Provide user a create record key to add a new
appropriation code to the APPROPRIATION table.
Revolving Fund appropriation codes cannot be added. Insert the civil, military, revolving flag
(GCivil = 'C’, Military = 'M’), local appropriation number, and description into the
APPROPRIATION table.

3.
A
B
C
D. Entry Point: Executed through VIS menu.
E
F
G
H

72

3.34 MCOO_INP

Program Name: MCOO_INP

Program Language: SQL*Forms
Purpose: Maintain obligation classes.

Entry Point: Executed through VIS menu.

Input Data Requirements: N/A
Output: N/A

Abnormal Termination: N/A

Program Execution: Query and display the description, civil class, military class, and
revolving class for all records in the CLASS_OF_OBLIGATION table. If editing, allow user to
scroll up or down to the appropriate record and edit the description, civil class, military class,
and revolving class. When editing a class, check to make sure the updated class is numeric, and
that it does not already exist in another class. Update the changes to the
CLASS_OF_OBLIGATION table. Provide user a create record key to add a new obligation class
to the CLASS_OF_OBLIGATION table. Insert the description, civil class, military class, and
revolving class ino the CLASS_OF_OBLIGATION table.

T oM myY 0wy

73

3.35 MEMP_INP

Program Name: MEMP_INP

Program Language: SQL*Forms

Purpose: Maintain employee information.

Entry Point: Executed through VIS menu.

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

Program Execution: Prompt user to enter all or a portion of the employee userid to be
entered or edited. Select and display records containing the employee userid, employee name,
social security number, and organization code from the EMPLOYEE table based on the employee

T ommyuOowp

userid entered.

If editing, allow user to modify the employee name and organization code only. If modifying
the organization code, validate against the ORGANIZATION table. Update the EMPLOYEE
table with the new changes.

If adding a new employee, provide user a create record key to insert the employee userid,
employee name, social security number, and organization code into the EMPLOYEE table.
Check to make sure the employee userid and social security number do not already exist in the
EMPLOYEE table. Also validate the organization code against the ORGANIZATION table.

74

3.36 MOCC_INP

A. Program Name: MOCC_INP

B. Program Language: SQL*Forms

C. Purpose: Maintain object class code information.

D. Entry Point: Executed through VIS menu.

E. Input Data Requirements: N/A

F. Qutput: N/A

G. Abnormal Termination: N/A

H. Program Execution: Prompt user to enter all or a portion of the object class code to be

entered or edited. Check to see if the object class code already exists in the

OBJECT_CLASS_CODES table. If already exists, allow user to modify the description, civil

flag, military flag, and revolving flag. Civil and Revolving Fund have the same object class

codes, but Military does not. Update the OBJECT_CLASS_CODES table with the new changes.
If object class code does not exist, provide user a create record key to add a new object class

code to the OBJECT_CLASS_CODES table. Allow user to enter the description and the

appropriate civil flag, military flag, and revolving flag. The only valid entries for the flags are

Y’ (Yes) or null. Check to make sure that Military does not mix object class codes with Civil

and Revolving Fund. Insert the record into the OBJECT_CLASS_CODES table.

75

3.37 MORG_INP

Program Name: MORG_INP

Program Language: SQL*Forms
Purpese: Maintain organization codes.
Entry Point: Executed through VIS menu.
Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

T omMmoUowp

. Program Execution: Prompt user to enter all or a portion of the organization code to be
entered or edited. Check to see if the organization code already exists in the ORGANIZATION
table. If already exists, allow user to modify the organization name and parent code. The parent
code cannot be the same as the organization code. Update the ORGANIZATION table with the
new changes.

If organization code does not exist, provide user a create record key to add a new organization
code to the ORGANIZATION table. Allow user to enter the new organization code, organization
name, and parent code. The parent code cannot be the same as the organization code. Insert the
record into the ORGANIZATION table.

76

38 MVEND_INP
. Program Name: MVEND_INP

. Program Language: SQL*Forms
. Purpose: Maintain vendor and vendor address information.

. Input Data Requirements: N/A
. Qutput: N/A
. Abnormal Termination: N/A

3.
A
B
C
D. Entry Point: Executed through VIS menu.
E
F
G
H

. Program Execution: Prompt user to enter a vendor code or select a vendor code from an
available list. Check to see of the vendor code exists in the VENDOR table.

If vendor already exists, display the vendor name, vendor type, and vendor tax id. Allow user
to update any one of these fields. Update the new changes to the VENDOR table. Also query
vendor address information for the vendor code entered. Display the vendor address code, vendor
address1, vendor address2, vendor city, vendor state, vendor zipcode, vendor country, and vendor
phone from the VENDOR_ADDR table based on the vendor code entered. Allow the user to
update all fields but the vendor address code, and also provide a create record key to add a new
address for the san.e vendor if necessary. The system generates the next vendor address code
by adding 1 to the maximum vendor address code. Update or insert the appropriate vendor
address information.

If a vendor code does not exist, provide the user a create record key to add a new vendor.
Allow user to enter the vendor name, vendor type, and vendor tax id. Insert the new record into
the VENDOR table. The user must also insert vendor address information for the new vendor.
The system will automatically assign an ’01° for the first vendor address code. Insert the vendor
address information into the VENDOR_ADDR table.

77

3.39 MVIS_INP

A. Program Name: MVIS_INP

B. Program Language: SQL*Forms

C. Purpose: Used mostly for conversion purposes. Allows user to fix certain fields that may
not be correct.

D. Entry Point: Executed through VIS menu.

E. Input Data Requirements: N/A

F. QOutput: N/A

G. Abnormal Termination: N/A

H. Program Execution: Prompt the user to enter the obligation document number. The
obligation document number must exist in the OBLIGATION table and the status = C’. The
system retrieves and displays the contract number, contract modification number, contract
amount, vendor code, commitment document number, adp work code, local appropriation number,
object class code, item code, and organization code from the OBLIGATION table based on the
obligation document number entered. The vendor name is retrieved from the VENDOR table
based on the vendor code retrieved from the OBLIGATION table.

The contract modification number can be updated if = -1. After a new contract modification
number is entered, contract details must be entered. Allow the user to enter the contract
reference modification number, amount, date of award, ending date, FOB date, tax ID, and
contract officer representative. Check to make sure the date of award <= ending date. Default
the ending date into the FOB date.

If the user changes the vendor code, check to make sure the vendor code exists in the vendor
table. If the adp work code is changed, the 1st digit should be between A-I for Civil, J-T for
Military, and V for Revolving Fund. If the adp work code is a Military work code, validate
against the D_F_FILE table. If the local appropriation number is changed, validate against the
APPROPRIATION table based on the civil, military, revolving flag.

If the object class code is changed, validate against the OBJECT_CILLASS_CODES table that the
code is valid based on the civil, military, revolving flag. If the item code is changed, validate
against the ACCT_ELM_TYPE table. If civil or revolving fund, code must be between 202 and

78

399. If military, code must be between 202 and 399, 500. If revolving fund prip, code must be
474, 477, 479, or 498. If the organization code is modified, validate against the

ORGANIZATION table.
Once all changes have been made, update the OBLIGATION, CONTRACT,

EXPENDITURE, SCHEDULED_PAYMNT, and INVOICE tables with the appropriate changes.

79

4. SQL*Plus

4.1 CHTRV_SQL
A. Program Name: CHTRV_SQL

B. Program Language: SQL*Plus
C. Purpose: Script is used when processing IATS travel cost information. It displays all

records ready to be processed that match to an obligation. This file should be scannea to find
any multiple obligations for one travel order number.

D. Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.

E. Input Data Requirements: N/A

F. Qutput: Script file displays the travel order number, vendor code, commitment document
number, obligation document number and amount from the TRAVEL_EXP and OBLIGATION
tables for the records ready to be processed that match to 2. obligation.

G. Abnormal Termination: N/A

H. Program Execution: Select the travel order number, vendor code, commitment document
number, obligation document number and amount from the TRAVEL_EXP and OBLIGATION
tables where the travel order number in the TRAVEL_EXP table matches the commitment
document number in the OBLIGATION table, the 2nd and 3rd positions of the obligation
document number are *80’, ’81°, or 82’ which identifies the records as travel, the acceptance flag
in the TRAVEL_EXP table is I’ for in progress, and the length of the travel order number in
the TRAVEL_EXP table is 6 positions. The records are ordered by the travel order number.

80

4.2 COEMIS_SQL

A. Program Name: COEMIS_SQL

B. Program Language: SQL*Plus

C. Purpose: Batch transactions to be updated into COEMIS.

D. Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.

E. Input Data Requirements: Enter the transaction month (i.e. 01 for January) and the transfer
date (i.e. 10-JAN-92) when prompted.

F. QOutput: Create output file CMR4480_LST containing the selected transactions in COEMIS

format.

G. Abnormal Termination: N/A

H. Program_ Execution: Select records containing the district code, organization code,

transaction date, batch number, record code, pay collect code, adp work code, object class code,
amount, document number, reference document number, and other reference number from the
CMR_4480 table where the interface acceptance flag = I’ (in progress) and spool them into a
file called CMR4480_LST. The CMR4480 table is then updated setting the transaction month
to the month that was entered, the transfer date to the date that was entered, and the interface

acceptance flag to A’ for all records that mct the selection criteria.

4.3 DEOBLG_SQL
Program Name: DEOBLG_SQL

Program Language: SQL*Plus
Purpose: Generate a listing of possible obligations to deobligate.

Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.
Input Data Requirements: N/A
Output: File (DEOBLG_LST) containing obligation document numbers.

Abnormal Termination: N/A

L QMmoo owp

Program Execution: Select obligation document numbers from the OBLIGATION table
where the obligation document number in the OBLIGATION table matches the obligation
document number in the EXPENDITURE table, and the partial final flag = 'F’, and the net
unliquidated balance <> 0, and the scheduled payment date for the expenditure is not null.

I. Other Program Notes: The records are ordered by vendor name, contract number, and

contract modification number.

82

4.4 DEOBLIGATE_SQL

Program Name: DEOBLIGATE_SQL

Program Language: SQL*Plus

Purpose: Generate a repor* of possible obligations to deobligate.

Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.
Input Data Requirements: N/A

Output: File (DEOBLIGATE_RPT) containing obligation information.

Abnormal Termination: N/A

T ommuanw»

Program Execution: Select the contract number, contract modification number, obligation
document number, commitment document number, vendor name, net unliquidated balance,
scheduled payment date, and expenditure document number from the OBLIGATION,
EXPENDITURE, and VENDOR tables where the obligation document number in the
OBLIGATION table matches the obligation document number in the EXPENDITURE table, and
the partial final flag = 'F’, and the net unliquidated balance <> 0 and the scheduled payment date
for the expenditure is not null.

1. Other Program Notes: The records are ordered by vendor name, contract number and

contract modification number.

4.5 DISBURSEMENT_SQL

A. Program Name: DISBURSEMENT_SQL

B. Program Language: SQL*Plus

C. Purpose: Generate a summary disbursement report by vendor.

D. Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.

E. Input Data Requirements: N/A

F. Qutput: File (DISBURSEMENT_RPT) containing summary disbursement information.
G
H

. Abnormal Termination: N/A

. Program Execution: Select records containing the vendor name, expenditure document
number, partial pay number, amount, contract number, invoice number, scheduled payment date,
disbursement date, DOV number, and check number from the DISBURSEMENT,
EXPENDITURE, VENDOR and SCHEDULED_PAYMNT tables where the expenditure
document number in the EXPENDITURE table matches the expenditure document number in the
DISBURSEMENT table, the vendor code in the SCHEDULED_PAYMNT table matches the
vendor code in the VENDOR table, the expenditure document number in the
SCHEDULED_PAYMNT table matches the expenditure document number in the
DISBURSEMENT table, the amount in the SCHEDULED_PAYMNT table matches the amount
in the in the DISBURSEMENT table, and the disbursement date is greater than *30-SEP-91°.

I. Other Program Notes: The records are ordered by the vendor name and the disbursement
date.

84

4.6 EXPFILE

Program Name: EXPFILE

Program Language: SQL*Plus

Purpose: Export the VIS database.

Entry Point: Executed from the batch procedure EXP_BAT.
Input Data Requirements: N/A

Output: Export file (i.e. VIS0131_DMP).

Abnormal Termination: N/A

ZoOmMmY oW

. Program Execution: Export the VIS database with the following options:
FULL=N

FILE=VIS0131_DMP (this filename should be changed to the appropriate date)
GRANTS=Y

INDEXES=N

OWNER=VIS

COMPRESS=N

85

4.7 FIXPAYCOLL_SQL

A. Program Name: FIXPAYCOLL_SQL

B. Program Language: SQL*Plus

C. Purpose: Change pay collect code for disbursement transactions to the same pay collect code
as the matching expenditure transactions after uploading the disbursement transactions from the
check writing routine to the VIS data base.

D. Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.
E. Input Data Requirements: N/A

F. Qutput: N/A

G. Abnormal Termination: N/A

H

. Program Execution: Update the pay collect code of the disbursement transactions in the
CMR_4480 table to the same pay collect code of the matching expenditure transactions where
the Civil, Military, Revolving flag = "M, the transaction code = "PA’, and the transaction date
= the current date.

86

4.8 PRE1166_SQL

A. Program Name: PRE1166_SQL

B. Program Language: SQL*Plus

C. Purpose: Generate a preliminary 1166 for the selected date for commercial vendors.

D. Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.

E. Input Data Requirements: Enter the scheduled payment date (i.e. 01-FEB-92) when
prompted.

F. QOutput: Create output file PRE1166_LST.

G. Abnormal Termination: N/A

H. Program Execution: Select records containing the vendor code, vendor name, expenditure

document number, local appropriation number, object class code, adp work code, employee name,
scheduled payment date, and amount from the SCHEDULED_PAYMNT, VENDOR, and
EMPLOYEE tables where the scheduled payment date is less than or equal to the scheduled
payment date entered, the vendor code in the VENDOR_CODE table matches the vendor code
in the SCHEDULED_PAYMNT table, the employee userid in the EMPLOYEE table matches
the initial entry id in the SCHEDULED_PAYMNT table, the transfer date is null, and the initial
entry id is not like "ADV%’.

I. Other Program Notes: The records are ordered by the vendor name and the adp work code.

Subtotals are computed by vendor as well as a grand total.

4.9 PRE1166TRV_SQL

A. Program Name: PRE1166TRV_SQL

B. Program Language: SQL*Plus

C. Purpose: Generate a preliminary 1166 for the selected date for travelers.

D. Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.

E. Input Data Requirements: Enter the scheduled payment date (i.e. 01-FEB-92) when
prompted.

F. Qutput: Create output file PRE1166TRV_LST.

G. Abnormal Termination: N/A

H. Program Execution: Select records containing the vendor name, vendor code, expenditure
document number, local appropriation number, object class code, adp work code, amount, initial
entry id, and scheduled payment date from the SCHEDULED_PAYMNT and VENDOR tables
where the scheduled payment date is less than or equal to the scheduled payment date entered,
the vendor code in the VENDOR_CODE table matches the vendor code in the
SCHEDULED_PAYMNT table, the transfer date is null, and the initial entry id is like ’"ADV%"’.

I. Other Program Notes: The records are ordered by the vendor name and the adp work code.

88

4.10 PREV23RPT_SQL
A. Program Name: PREV23RPT_SQL
B. Program Language: SQL*Plus
C. Purpose: Generate a report of those travel order numbers that do not match to an obligation
document number. It also generates a list of those travel order numbers where the vendor does
not exist.
D. Entry Point: Executed from the batch procedure TRAVEL_BAT.
E. Input Data Requirements: N/A
F. Qutput: Create output file TRAVEL_REJ.
G. Abnormal Termination: N/A
H. Program Execution: Select records containing travel order number, vendor code, and
vendor name from the TRAVEL_EXP and VENDOR tables where the vendor code in the
VENDOR table matches the vendor code in the TRAVEL_EXP table, the travel order number
is not like ’E%’ and the acceptance flag = 'I'. This script also selects records containing the
travel order number and vendor code from the TRAVEL_EXP table where the vendor code does
not exist in the VENDOR table and the acceptance flag = 'I’.

The TRAVEL_EXP table is then updated setting the acceptance flag = 'R’ for those records

that met the select criteria.

89

4.11 TBO_SQL

Program Name: TBO_SQL

Program Language: SQL*Plus
Purpose: Generate a TBO repornt for a specified date range.

Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.
Input Data Requirements: Enter the start date and the end date when prompted.
Output: Create output file TBO_RPT.

Abnormal Termination: N/A

TommUow»

Program Execution: Select records containing the dssn number, cycle number, adp work
code, obligation document number, expenditure document number, disbursement document
number, amount, and local appropriation number from the DISBURSEMENT, EXPENDITURE,
and OBLIGATION tables where the entry date in the EXPENDITURE table is between the start
date entered and the end date entered, the expenditure document number in the EXPENDITURE
table matches the expenditure document number in the DISBURSEMENT table, the obligation
document number in the OBLIGATION table matches the obligation document number in the
EXPENDITURE table, and the dssn number is not null.

I Other Program Notes: The records are ordered by dssn number, cycle number, and local

appropriation number.

4.12 UPOBLG_SQL

A. Program Name: UPOBLG_SQL

B. Program Language: SQL*Plus

C. Purpose: Convert the IATS travel order number to an obligation document number for use
by V23 (Process IATS Travel Cost Information).

D. Entry Point: Executed from the batch procedure TRAVEL_BAT.

E. Input Data Requirements: N/A

F. Qutput: N/A

G. Abnormal Termination: N/A

H. Program Execution: Update the TRAVEL_EXP table setting the travel order number in the
TRAVEL_EXP table to the obligation document number in the OBLIGATION table where the
travel order number in the TRAVEL_EXP table matches the commitment document number in
the OBLIGATION table, the 2nd and 3rd positions of the obligation document number are ’80’,
'81’, or 82’ which identifies the records as travel, the vendor code in the OBLIGATION table
matches the vendor code in the TRAVEL_EXP table, the acceptance flag in the TRAVEL_EXP
table is "I’ for in progress, the travel order number in the TRAVEL_EXP table is not like ’E%’,
and the length of the travel order number in the TRAVEL_EXP table is 6 positions.

91

4.13 UPVEND_SQL

Program Name: UPVEND_SQL

Program Language: SQL*Plus

Purpose: Add a 0 to the beginning of the vendor code in the TRAVEL_EXP table.
Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.

Input Data Requirements: N/A

Output: N/A

Abnormal Termination: N/A

Program Execution: Update the TRAVEL_EXP table adding a 0 to the beginning of the
vendor code where the acceptance flag = ’I’ and the length of the vendor code is 9 positions.

L Q™M moaow»

92

4.14 V27_SQL
A. Program Name: V27_SQL

B. Program Language: SQL*Plus
C. Purpose: Create a file of scheduled payments for commercial vendors and travelers for the

selected date.

D. Entry Point: Login to SQL*Plus with the appropriate VIS userid/password.

E. Input Data Requirements: Enter the scheduled payment date (i.e. 01-FEB-92) when
prompted.

F. Abnormal Termination: N/A

G. Program Execution:

For commercial vendors: select records containing the district code, expenditure document
number, local appropriation number, ams code for Military, vendor code, vendor name, vendor
address 1 and 2, vendor city, vendor state, vendor zipcode, scheduled payment date, amount,
object clars code, adp work code, employee name, and allotment for Military from the SCHED-
ULED_PAYMNT, VENDOR, VENDOR_ADDR, EMPLOYEE, and D_F_FILE where the
scheduled payment date in the SCHEDULED_PAYMNT table is less than or equal to the
scheduled payment date entered, the transfer date in the SCHEDULED_PAYMNT table is null,
the vendor code in the SCHEDULED_PAYMNT table matches the vendor code in the VENDOR
table, the vendor code in the VENDOR_ADDR table matches the vendor code in the
SCHEDULED_PAYMNT table, the vendor address code in the VENDOR_ADDR table matches
the vendor address code in the VENDOR_ADDR table, the employee userid in the EMPLOYEE
table matches the initial entry id in the SCHEDULED_PAYMNT table, and if Military the D
level adp work code in the D_F _FILE matches the adp work code in the
SCHEDULED_PAYMNT table. The records are ordered by local appropriation number and
vendor code.

For travelers: select records containing the district code, expenditure document number, local
appropriation number, ams code for Military, vendor code, vendor name, vendor address 1 and
2, vendor city, vendor state, vendor zipcode, scheduled payment date, amount, object class code,
adp work code, initial entry id, and allotment for Military from the SCHEDULED_PAYMNT,

93

VENDOR, VENDOR_ADDR, and D_F_FILE where the scheduled payment date in the
SCHEDULED_PAYMNT table is less than or equal to the scheduled payment date entered, the
transfer date in the SCHEDULED_PAYMNT table is null, the vendor code in the
SCHEDULED_PAYMNT table matches the vendor code in the VENDOR table, the vendor code
in the VENDOR_ADDR table matches the vendor code in the SCHEDULED_PAYMNT table,
the vendor address code in the VENDOR_ADDR table matches the vendor address code in the
VENDOR_ADDR table, the initial entry id in the SCHEDULED_PAYMNT table is like
’ADV%’, and if Military the D level adp work code in the D_F_FILE matches the adp work
code in the SCHEDULED_PAYMNT table. The records are ordered by local appropriation
number and vendor code.

Update the SCHEDULED_PAYMNT table setting the transfer date = sysdate for those records

that met the selection criteria.

94

5. SQL*Loader

5.1 V22_CTL
Program Name: V22_CTL

Program Language: SQL*Loader
Purpose: Load IATS travel cost information into the TRAVEL_EXP table.

Entry Point: Login to SQL*Loader with the appropriate VIS userid/password.

Input Data Requirements: Input file IATS_DAT.

Output: N/A

Abnormal Termination: Capture errors in logfile V22_LOG.

Program Execution: Load vendor code, obligation document number, expenditure amount,
advance amount, acceptance flag, and transfer date into the TRAVEL_EXP table.

T ommyu oWy

95

5.2 V28A_CTL

Program Name: V28A_CTL

Program Language: SQL*Loader

Purpose: Load disbursement information into the DISBURSEMENT table.
Entry Point: Login to SQL*Loader with the appropriate VIS userid/password.
Input Data Requirements: Input file V28A_DAT.

Output: N/A

Abnormal Termination: Capture errors in logfile V28A_LOG.

T ommyY 0w

Program Execution: Load disbursement document number, amount, check number, DOV
number, disbursement date, and expenditure document number into the DISBURSEMENT table.

96

5.3 V28B_CTL
Program Name: V28B_CTL

Program Language: SQL*Loader

Purpose: Load PA transaction information into the CMR_4480 table.

Entry Point: Login to SQL*Loader with the appropriate VIS userid/password.
Input Data Requirements: Input file V28B_DAT.

QOutput: N/A

Abnormal Termination: Capture errors in logfile V28B_LOG.

momEU oW

Program Execution: Load district code, organization code, acceptance date, batch number,
record code, transaction code, pay collect code, adp work code, object class code, amount,
document number, reference document number, civil, military and revolving flag, destination,

interface acceptance flag and transaction type indicator into the CMR_4480 table.

97

54 V44_CTL

Program Name: V44_CTL

Program Language: SQL*Loader

Purpose: Load Citicorp information into the AUTO_SCHED iable.

Entry Point: Login to SQL*Loader with the appropriate VIS userid/password.
Input Data Requirements: Input file AUTO_DAT.

QOutput: N/A

Abnormal Termination: Capture errors in logfile V44_LOG.

T QMmoo w »

Program Execution: Load obligation document number, amount, vendor code, invoice
number, scheduled payment date, transfer date, description, and acceptance flag into the
AUTO_SCHED table.

98

5.5 VISCIV_CTL
A. Program Name: VISCIV_CTL

B. Program Language: SQL*Loader
C. Purpose: Load Civil and Revolving Fund adp work codes and appropriation numbers into

the CIVREF table.

D. Entry Point: Login to SQL*Loader with the appropriate VIS userid/password.

E. Input Data Requirements: Input file CIVRF_DAT.

F. Output: N/A

G. Abnormal Termination: Capture errors in logfile VISCIV_LOG.

H. Program Execution: Load adp work code and local appropriation number into the CIVRF

table.

99

5.6 VISDF_CTL

A. Program Name: VISDF_CTL

B. Program Language: SQL*Loader
C. Purpose: Load D, F, and G leve! adp work codes, ams codes, local appropriation numbers,

and allotments for Military into the D_F_FILE table.

D. Entry Point: Login to SQL*Loader with the appropriate VIS userid/password.

E. Input Data Requirements: Input file D_T_F_DAT.

F. Qutput: N/A

G. Abnormal Termination: Capture errors in logfile VISDF_LOG.

H. Program Execution: Load G level adp work code, F level adp work code, D level adp work
code, ams code, allotment, and local appropriation number into the D_F_FILE table.

100

6. SCL PROCEDURES

6.1 BATCH_TRV
A. Program Name: BATCH_TRV

B. Program Language: SCL
C. Purpose: Run the PRO*C programs V23 (Process IATS Travel Cost Information) and V31

(Process Recurring Expenditures).

D. Entry Point: Executed from the batch procedure TRAVEL_BAT.
E. Input Data Requirements: N/A

F. Output: Create output files V23_RPT and V31_RPT.
G. Abnormal Termination: N/A

H. Program Execution:

Create file connection to $output for V31_RPT
Run V31

Delete file connection to $output for V31_RPT
Create file connection to $output for V23_RPT
Run V23

Delete file connection to $output for V23_RPT

AN o A o

101

6.2 CC_BAT

T oMMy 0w

Program Name: CC_BAT

Program Language: SCL
Purpose: Run the PRO*C program V42 (Process CITICORP Information).

Entry Point: Submit job from the CDC prompt.
Input Data Requirements: N/A
QOutput: Create output file V42_RPT.

Abnormal Termination: N/A

. Program Execution:

Login U4RMOFA, identifying adp work code and job type
Set ORACLE environment to sid s

Change to VSDBA subcatalog

Run V42

Print V42_RPT

Logout

A O S o a

102

6.3 DEOBLG_BAT
Program Name: DEOBLG_BAT

Program Language: SCL
Purpose: Run the PRO*C program V45 (Automatic Obligation Liquidation).

Entry Point: Submit job from CDC prompt.
Input Data Requirements: N/A

Output: Create output file V45_RPT.

Abnormal Termination: N/A

Program Execution:

Login U4RMOFA, identifying adp work code and job type
Set ORACLE environment to sid s

Change to VSDBA subcatalog

Create file connection to $output for V45_RPT
Run V45

Delete file connection to $output for V45_RPT

T oMM U0®m»

NSV AL Db

Logout

103

6.4 EXP_BAT
Program Name: EXP_BAT

Program Language: SCL

Purpose: Run the batch file EXPFILE.

Entry Point: Submit job from the CDC prompt.
Input Data Requirements: N/A

Qutput: N/A

. Abnormal Termination: N/A

. Program Execution:

Login U4RMOFA, identifying adp work code and job type
Set ORACLE environment to sid s

Change to VSDBA subcatalog

Run export (exp parfile=EXPFILE)

Logout

TomMmMUNw

A

104

6.5 PAID_MASTER_BAT

Program Name: PAID_MASTER_BAT
Program Language: SCL

Purpose: Run report DISBURSEMENT_SQL.
Entry Point: Submit job from CDC prompt.

Input Data Requirements: N/A
Output: Create output file DISBURSEMENT_RPT.

Abnormal Termination: N/A

. Program Execution:

Login U4RMOFA, identifying adp work code and job type
Set ORACLE environment to sid s

Change to VSDBA subcatalog

Run DISBURSEMENT_SQL

Print DISBURSEMENT_RPT

Logout

TomMmY oW >

= N i e

105

6.6 PARTPAY_BAT

. Program Name: PARTPAY_BAT
Program Language: SCL

Purpose: Run report PARTPAY.

. Entry Point: Submit job from CDC prompt.
Input Data Requirements: N/A

Output: Create output file PARTPAY_LIS.

. Abnormal Termination: N/A

T oM myU oWy

. Program Execution:

Login U4RMOFA, identifying adp work code and job type
Set ORACLE environment to sid s

Run report PARTPAY

Print PARTPAY_LIS

Logout

A S

106

6.7 TRAVEL_BAT

A. Program Name: TRAVEL_BAT
B. Program Language: SCL
C. Purpose: Run UPOBLG_SQL, PREV23RPT_SQL and the batch procedure BATCH_TRV.
D. Entry Point: Submit job from the CDC prompt.
E. Input Data Requirements: N/A
F. Output: Create output files TRAVEL_REJ, V23_RPT and V31_RPT.
G. Abnormal Termination: N/A
H. Program Execution:
1. Login U4ARMOFA, identifying adp work code and job type
2. Set ORACLE environment to sid s
3. Change to VSDBA subcatalog
4. Run UPOBLG_SQL
5. Run PREV23RPT_SQL
6. Execute BATCH_TRV
7. Print TRAVEL_REJ, V23_RPT, and V31_RPT
8. Logout

107

7. SQL*ReportWriter

7.1 PARTPAY_REP

Program Name: PARTPAY_REP
Program Language: SQL*ReportWriter
Purpose: Generate partial pay sheet.

Entry Point: Executed as a batch program.
Input Data Requirements: N/A

Output: Generate report PARTPAY_LIS.

Abnormal Jermination: N/A

T o mmuo o w»

Program Execution:

1. Select and display the adp work code, obligation document number, obligation amount,
net unliquidated balance, obligation entry date, object class code, commitment document
number, vendor name, local appropriation number, contract number, contract modification
number, contract reference modification number, contract amount, date of award, contract
ending date, discount days, discount percent, retained percent, retained percent document
number, organization name, organization code from the VENDOR, DISC_TERMS,
CONTRACT, OBLIGATION, ORGANIZATION, and EXPENDITURE tables where the
obligation status = C’, the vendor code from the OBLIGATION table matches the vendor
code in the VENDOR table, the contract number and contract modification number in the
OBLIGATION table matches the contract number and contract modification number in
the CONTRACT table, the organization code in the OBLIGATION table matches the
organization code in the ORGANIZATION table, the discount terms code in the
CONTRACT table matches the discount terms code in the DISC_TERMS table, the net
unliquidated balance of the obligation > 0 or the net unliquidated balance = 0 and the
scheduled payment date is null.

2. Select and display each expenditure document number, invoice number, expenditure
entry date, partial pay number, expenditure amount, and scheduled payment date from the
EXPENDITURE table based on the obligation document number displayed in Step 1.

108

3. Select and display the disbursement document number, DOV number, check number,

and amount from the DISBURSEMENT table based on the expenditure document number
displayed in Step 2.

109

8. PRO*C

8.1 V23_PC

A. Program Name: V23
B. Program Language: PRO*C
C. Purpose: The purpose of this program is to query the data base for travel expenditures that
should be processed. V23 generates the expenditure transaction, required interface transaction
for COEMIS, schedules the expenditure for payment, performs recoupment of advance, if
appropriate, and updates the TRAVEL_EXP and OBLIGATION tabies consistent with the
transactions processed.
D. Entry Point: Executed as a batch program. Command line must contain the userid and
password for the data base being accessed as well as a maximum allowable error count for
abnormal transactions.
E. Input Data Requirements: N/A
F. Qutput: The program prints a standard report with header and trailer information containing:
(1) The expenditure and obligation document numbers for each transaction.
(2) The total number of transactions accepted and rejected.
G. Abnormal Termination: The program will abnormally terminate upon encountering an
ORACLE error. Both a descriptive and the ORACLE error messages are printed. In VIS23 a
logical unit of work is defined as 100 transactions. Individual transactions may be rejected
within this logical unit of work. If an ORACLE error is encountered in processing a transaction
set, i.e. logical unit of work, the entire set of transactions will be rolled back and the program
will continue with the next set.
H. Program Execution: The program processes transactions based on the TRAVEL _EXP table
where the acpt_flag = "I'. V23 uses a cursor to fetch transactions from the TRAVEL_EXP table
according to the criterion stated above. A commitment is made for every logical unit of work
(see G above) or at successful termination of the program.
(1) Fetch the following information from TRAVEL_EXP(t) where acpt_flag = 'I":

(a) adv_amt: advance amount, if any, made to the vendor.

110

(b) exp_amt: amount of the travel expenditure. (NOTE: This amount is
calculated as output from the IATS Standard Travel System.)
(c) oblg_doc_nbr: the obligation document number for the travel expenditures.
(d) vendor_code: the vendor code of the traveler.
(2) Retrieve the following information from the OBLIGATION (o) table based on the
oblg_doc_nbr in H(1)(c).
(a) item_code: The item code for this obligation.
(b) object_class_code: The object class code for this obligation.
(c) adp_work_code: The COEMIS ADP work code for this obligation.
(d) org_code: The responsible organization code for this obligation.
(¢) civ_mil_rvolvg flag: An indicator of the category of funds for this
obligation; civil, military, or revolving fund.
(f) loc_appn_nbr: The appropriation number locally assigned to this obligation.
(g) vendor_code: The vendor code assigned to this obligation.
(h) net_unlig_bal: The net unliquidated balance for this obligation. If an
obligation document is not found in the OBLIGATION table, increment the error
count and go to step H(1).
(3) Check the obligation document against the following criteria:
(a) Is o.vendor_code = t.vendor_code?
(b) Is o.net_unlig_bal >= t.exp_amt?
If either test fails, update TRAVEL_EXP set t.acpt_flag = 'R’ for the current
transaction and skip to step H(1).
(4) Create the expenditure document for this transaction by forming a concatenated string
consisting of:
(@) char1-"F’.
(b) char 2-3 - Fiscal month of the system date.
(c) char 4-5 - Fiscal year of the system date.
(d) char 6-9 - Sequence number for expenditure documents (from RDBMS)
(5) Insert the following record into the EXPENDITURE table:

111

(6) Create the interface transaction by inserting the following record into the CMR_4480

table:

amount = t.exp_amt
entry_date = sysdate

exp_doc_nbr = document number generated in step 4
init_entry_id = 'Travel Exp’

oblg_doc_nbr = t.oblg_doc_nbr

partial_final_flag = ’p’

vendor_addr_code = 01’

vendor_code = t.vendor_code

adp_work_code = t.adp_work_code

status = 'C’

cycle_nbr = null

acpt_date = sysdate

del_date = sysdate

descrl = "VIS generated travel expenditure’

descr2 = null

disc_terms_code = null

dssn_nbr = null

inv_nbr = null

pp_nbr =0

scheduled_payment_date = next business day based on system time when V23 is
executed. If this date is a Friday or Saturday, schedule expenditure for Monday.

tbo_flag = null

acpt_date = sysdate
adp_work_code = o.adp_work_code

amount = t.exp_amt

batch_nbr = ’52’ for civil, ’57’ for military, and ’47’ for revolving fund

civ_mil_rvolvg_flag = o.civ_mil_rvolvg_flag

112

dest = 'A’
dist_code = '4’ (Note: This is code for WES.)
doc_nbr = expenditure document number generated in step 4
interface_acpt_flag = 'I’
record_code = 02’
trns_code = *MA’ for civil or military and "MD"’ for revolving fund
trns_type_indic = 'E’
item_code = o.item_code
object_class_code = o.object_class_code
org_code = o0.org_code
other_ref_nbr = null
pay_coll_code = null for civil and '3’ for military or revolving fund
ref_doc_nbr = a.oblg_doc_nbr for civil or military and null for revolving
fund
trf_date = null
trns_month = null
(7) Schedule the expenditure for payment by inserting the following record into the
SCHEDULED_PAY table as follows:
adp_work_code = For o.civil_mil_rvolvg_flag = *C’ = first 5 characters of
o.adp_work_code concatenated with the string *0000000000°.
For o.civil_mil_rvolvg_flag = "M’ = D level adp work code
retrieved from the D_F_FILE table. For
o.civil_mil_rvolvg_flag = 'R’ = *"VW0000000000000°.
amount = t.exp_amt
exp_doc_nbr = exp_doc_nbr generated in step H(4)
init_entry_id = The entry_id is constructed from the base character string of
*ADV000000000". IF the t.adv_amt > t.exp_amt use t.adv_amt,
else use t.exp_amt. Copy the appropriate amount represented

as a character string into the base string, right justified.

113

loc_appn_nbr = o.loc_appn_nbr

object_class_code = o.object_class_code

scheduled_payment_date = scheduled payment date generated in step H(5)(t)

status = 'C’

vendor_code = t.vendor_code

vendor_addr_code = "01’

contr_mod_nbr = null

contr_nbr = null

trns_date = sysdate

trnsf_date = null
(8) K tadv_amt > 0 and o.civ_mil_rvolvg flag = 'M’, generate the appropriate
transaction to schedule recoupment of the advance amount by inserting a record into the
SCHEDULE_PAYMNT table as follows:

adp_work_code = D level adp_work_code as determined in step H(7)(a)(2)

amount = t.adv_amt or t.exp_amt if t.adv_amt > t.exp_amt

exp_doc_nbr = document number as generated in step H(4) for matching

transaction

init_entry_id = "ADV000000000"

loc_appn_nbr = o.loc_appn_nbr

object_class_code = o.object_class_code

scheduled_payment_date = date as determined in step H(5)

status =T’

vendor_code = 0000000000’

vendor_addr_code = "01’

contr_mod_nbr = null

contr_nbr = null

trns_date = sysdate

trnsf_date = null
(9) Set t.acpt_flag = 'A’ for current entry being processed in TRAVEL_EXP.

114

(10) Update the OBLIGATION table, set net_unliq_amt = net_unliq_bal - texp_amt
where 0.0blg_doc_nbr = current oblg_doc_nbr.
(11) If 100 wansactions have been processed, commit work to data base and go to step
(1), else go to step (1).
(12) If no records are fetched from cursor, commit outstanding transactions, if any, print
summary report, and exit from program.

I. Other Program Notes:
(1) District Code used in step H(6) is specific for the installation. The parameter will
have to be modified and separate programs maintained if the district code changes.
(2) The expenditure document number generated in step H(4) required the existence of
an ORACLE sequence number named EXPSEQ in the data base.
(3) V23 locks the tables EXPENDITURES, SCHEDULED_PAYMENT, OBLIGATION,
TRAVEL_EXP, D_F_FILE, and CMR_4480 in exclusive mode. This program should be

run alone to avoid a possible deadlock situation.

115

8.2 V31_PC

A. Program Name: V3l

B. Program Language: PRO*C
C. Purpose: This program queries a VIS data base to determine if a recurring expenditure

document is due for processing. If so, the program generates the appropriate expenditure
transaction for insertion into the VIS data base plus the accompanying transaction for subsequent
processing by COEMIS.
D. Entry Point: Executed as a batch program. Command line must contain the userid and
password for the data base being processed.
E. Input Data Requirements: N/A
F. Qutput: Program prints the following report:
(1) Listing of the expenditure document number, amount, and referenced obligation
document number for each expenditure transaction generated.
(2) Total number of transactions processed.

G. Abnormal Termination: The program will abnormally terminate upon encountering an

ORACLE error. Both a descriptive and the ORACLE error messages are printed. The current
Transaction is rolled back and the program exited. Important Note: The program performs only

one commit, after processing all transactions; consequently, an error in any transaction will roll
back all previously completed transactions.

H. Program Execution: The program processes transactions based on records in the
RECURRING_EXP table.
(1) The records in the RECURRING_EXP table must meet the following criteria:
(a) Status =’A’
(b) Next expenditure date <= system date

(c) Next expenditure date <= expiration date
(2) Fetch the following information for each recurring expenditure to be processed from
the RECURRING_EXP (re) table:
(a) oblg_doc_nbr: The obligation document to be referenced by the expenditure.
(b) init_entry_id: The userid of the person who created this recurring expenditure

116

record.
(c) amount: The amount of the expenditure transaction.
(d) object_class_code: The object class code for expenditure transaction.
(e) descrl: The first line of the description entered for this expenditure.
(f) descr2: The second line of the description entered for this expenditure.
(g) vendor_code: The vendor code for this expenditure.
(h) item_code: The item code for this expenditure.
(i) vendor_addr_code: The vendor address code for this expenditure.
(j) paymnt_period: The payment period, in months, covered by this expenditure.
(k) adp_work_code: The COEMIS ADP work code for this expenditure.
(2) If no records are found, all transactions have been processed, print final report,
commit, and exit program.
(3) Check the information from H(2) against the OBLIGATION table.
(a) Is obligation re.oblg_doc_nbr certified?
(b) Is the net unliquidated balance for re.oblg_doc_nbr >= re.amount? If either
of these tests fail, print a descriptive error message, and go to step 1, i.e., skip this
transaction. Else retrieve the following information from the OBLIGATION (o)
table for re.oblg_doc_nbr.
(c) org_code: The responsible organization code for this obligation.
(d) civ_mil_rvolvg flag: An indicator of the category of funds for this
obligation, i.e., civil, military, or revolving fund.
(4) Create the expenditure document for this transaction by forming a concatenated string
consisting of:
(a) char1-'F
(b) char 2-3 - Fiscal month of the system date
(c) char 4-5 - Fiscal year of the system date
(d) char 6-9 - Sequence number for expenditure documents (from RDBMS)
(5) Insert the following record into the EXPENDITURE table:

amount = re.amount

117

entry_date = sysdate

exp_doc_nbr = document number generated in step 4

init_entry_id = re.init_entry_id

oblg_doc_rbr = re.oblg_doc_nbr

partial_final_flag = 'P’

vendor_addr_code = re.vendor_addr_code

vendor_code = re.vendor_code

adp_work_code = re.adp_work_code

status = 'C’

acpt_date = sysdate

del_date = sysdate

descrl = re.descrl

descr2 = re.descr2

dssn_nbr = null

inv_nbr = null

pp_nbr = the next sequential partial pay number for all expenditures in the

EXPENDITURE table referencing this re.oblg_doc_nbr

scheduled_paymnt_date = null

tbo_flag = null
(6) Create the interface transaction by inserting the following record into the CMR_4480
table:

acpt_date = sysdate

adp_work_code = re.adp_work_code

amount = re.amount

batch_nbr = ’52’ for civil, ’57’ for military, and ’47’ for revolving fund

civ_mil_rvolvg_flag = o.civ_mil_rvolvg_flag

dest = A’

dist_code = '4’ (Note: This is code for WES)

doc_nbr = expenditure document number generated in step 4

118

interface_acpt_flag = 'I’
record_code = ’02’
tmns_code = "MA’ for civil or military and "MD" for revolving fund
trns_type_indic = 'E’
item_code = re.item_code
object_class_code = re.object_class_code
org_code = o.org_code
other_ref_nbr = null
pay_coll_code = null for civil and ’3’ for military or revolving fund
ref_doc_nbr = re.oblg_doc_nbr for civil or military and null for revolving
fund
trf_date = null
trns_month = null
(7) Update the RECURRING_EXP table for the record currently being processed and add
re.paymnt period to re.next_exp_date.
(8) Update the OBLIGATION table for document number re.oblg_doc_nbr decreasing
o.net_unliq_bal by re.amount.
(9) Go to Step 1 and repeat.
I. Other Program Notes:

(1) District code used in step H(6) is specific for the installation. This attribute will have

to be modified if the district code changes.

(2) The expenditure document number generated in step H(4) requires the existence of

an ORACLE sequence number names EXPSEQ in the database.

(3) This program locks the following tables in exclusive mode during executions:
EXPENDITURE, RECURRING_EXP, CMR_4480, and OBLIGATION. Care
should be taken that VIS31 is run alone to avoid a possible deadlock situation.

119

8.3 V42_PC

A. Program Name: V42

B. Program Language: PRO*C
C. Purpose: The purpose of this program is to query the data base for a set of expenditures to

be scheduled for payment. V42 generates the required expenditure document and interface
transaction for COEMIS, schedules the expenditures for payment, and updates the
AUTO_SCHED, OBLIGATION, and INVOICE tables consistent with the transactions processed.
Expenditures to be scheduled are flagged in the AUTO_SCHED table.
D. Entry Point: Executed as a batch program. Command line must contain the userid and
password for the data base being processed as well as the file name (complete path) for the
output report.
E. Input Data Requirements: N/A
F. Qutput: The program prints (to the output file specified on the command line) a report with
header and trailer information containing:
(1) The expenditure and obligation document numbers for each transaction processed.
(2) The total number of transactions accepted and rejected.

G. Abnormal Termination: The program will abnormally terminate upon encountering an

ORACLE error. Both a descriptive and the ORACLE error messages are printed. The current
transaction is rolicd back and the program exited. Important Note: See Section 4 for description
of commit interval used by VIS42. An error will affect all transactions for a logical unit of work
as defined for VIS42.

H. Program Execution: The program processes transactions based on the AUTO_SCHED table

y

where the acpt_flag = 'I'. V42 uses nested cursors to group expenditures by vendor code and
invoice number and these two variables drive the inner cursor. Transactions are processed 100
at a time with respect to data base update. A logical unit of work is defined by a vendor code
and invoice number; consequently, a commit is made when either of these variables change oar
a termination (successful) of the program

(1) Fetch the following information from AUTO_SCHED (a) based on criterion discussed

above:

120

(a) vendor_code: The vendor code for this expenditure.
(b) inv_nbr: The invoice number referenced by this expenditure. 7
(2) Fetch the following information from AUTO_SCHED (a) where acpt_flag = 'T’,
vendor_code = a.vendor_code, and inv_nbr = a.inv_nbr, from step H(1):
(a) oblg_doc_nbr: The obligation document number referenced by this
expenditure.
(b) amount: The amount of the expenditure.
(c) scheduled_paymnt_date: The scheduled payment date for the expenditure.
(d) descr: The description for this expenditure.
(3) Retrieve the following information from the OBLIGATION (o) table based on the
oblg_doc_nbr in H(2)(a).
(a) item_code: The item code for this obligation.
(by object_class_code: The object class code for this obligation.
(c) adp_work_code: The COEMIS ADP work code for this obligation.
(d) org_code: The responsible organization code for this obligation.
(e) civ_mil_rvolvg flag: An indicator of the category of funds for this
obligation; civil, military, or revolving fund.
(f) loc_appn_nbr: The appropriation number locally assigned to this obligation.
(g) vendor_code: The vendor code assigned to this obligation.
(h) net_unlig_bal: The net unliquidated balance for this obligation. If an
obligation document is not found in the OBLIGATION table, abnormally
terminate the program.
(4) Check the obligation document against the following criteria:
(a) Is o.vendor_code = a.vendor_code?
(b) Is o.net_unlig_bal >= a.amount?
If either test fails, update AUTO_SCHED set a.acpt_flag = 'R’ for all obligation
documents where oblg_doc_nbr = a.oblg_doc_nbr and skip to step 11.
(5) Create the expenditure document for this transaction by forming a concatenated string

consisting of:

121

(a) charl-'F

(b) char 2-3 - Fiscal month of the system date

(c) char 4-5 - Fiscal year of the system date

(d) char 6-9 - Sequence number for expenditure documents (from RDBMS)
(6) Insert the following record into the EXPENDITURE table:

amount = a.amount

entry_date = sysdate

exp_doc_nbr = document number generated in step 4

init_entry_id = "U4RFEMHS’

oblg_doc_nbr = a.oblg_doc_nbr

partial_final_flag = 'P’

vendor_addr_code = *01’

vendor_code = a.vendor_code

adp_work_code = o.adp_work_code

status = 'C’

acpt_date = sysdate

del_date = sysdate

descrl = a.descr

descr2 = null

dssn_nbr = null

inv_nbr = null

pp_nbr =0

scheduled_paymnt_date = a.scheduled_paymnt_date

tbo_flag = null
(7) Create the interface transaction by inserting the following record into the CMR_4480
table:

acpt_date = sysdate

adp_work_code = o.adp_work_code

amount = a.amount

122

batch_nbr = ’52’ for civil, '57’ for military, and 47’ for revolving fund
civ_mil_rvolvg_flag = o.civ_mil_rvolvg flag
dest = A’
dist_code = 4’ (Notes: This is code for WES.)
doc_nbr = expenditure document number generated in step 4.
inter_face_acpt_flag = 'I’
record_code = '02’
trns_code = 'MA’ for civil or military and 'MD’ for revolving fund.
trns_type_indic = 'E’
item_code = o.item_code
object_class_code = o.object_class_code
org_code = o.org_code
other_ref_nbr = null
pay_coll_code = null for civil and ’3’ for military or revolving fund.
ref_doc_nbr = a.oblg_doc_nbr for civil or military and null for revolving
fund
trf_date = null
trns_month = null
(8) Schedule the expenditures for payment by inserting the following record into the
SCHEDULED_PAYMNT table as follows:
adp_work_code = For o.civ_mil_rvolvg flag = C’ = first 5 characters of
o.adp_work_code concatenated with the string *0000000000°.
For o.civ_mil_rvolvg_flag = "M’ = D level adp work code
retrieved from the D_F_FILE table. For O.civ_mil_rvolvg flag =
'R’ = "VW0000000000000’
amount = a.amount
exp_doc_nbr = exp_doc_nbr generated i step H(5)
init_entry_id = "U4RFEMHS’

loc_appn_nbr = o.loc_appn_nbr

123

object_class_code = o0.object_class_code

scheduled_paymnt_date = a.scheduled_paymnt_Date

status = A’

vendor_code = a.vendor_code

vendor_addr_code = "01’

contr_mod_nbr = null

contr_nbr = null

trns_date = system date

trnsf_date = null
(9) Set a.acpt_flag = *A’ for all entries in AUTO_SCHED where acpt_flag = 'I’ and
a.oblg_doc_nbr = current oblg_doc_nbr
(10) Update the OBLIGATION table, set net_unliq_bal = net_unliq_bal - a.amount where
o.oblg_doc_nbr = current oblg_doc_nbr
(11) Go to step H(2), repeat until no records are fetched from the cursor.
(12) Search the INVOICE (i) table for a record where i.inv_nbr = a.inv_nbr and
i.vendor_code = a.vendor_code.

(a) If the record does not exist, insert the following record into the INVOICE

table:

due_date = sysdate

gross_amt = total of all expenditures (a.amount) processed in step H(2)

through H(10)

init_entry_id = "U4RFEMHS’

inv_date = a.inv_nbr

prompt_payment_flag = 'Y’

vendor_code = a.vendor_code

disc_terms_code = null

eamings_period_start_date = null

eamnings_period_stop_date = null

rec_date = null

124

(b) If the record does exist, update the gross_amt adding to it the amount as
defined in H(12)(a)(2).
(13) Go to step 1 and repeat until there are no additional combinations of vendor_code
and invoice_nbr to be processed by this session.
(14) Print summary report and exit program.,
I. Other Program Notes:
(1) District code used in step H(7) is specific for the installation (and the data base) V42
processes. This parameter will have to be modified and separate programs maintained if
the district codes change.
(2) The expenditure document number generated in step H(5) requires the existence of
an ORACLE sequence number named EXPSEQ in the data base.
(3) V42 is designed so that optional performance will be achieved when the number of
transactions to be process (i.e., expenditures) per combination of vendor code and invoice
number is 99.

125

84 V45_PC

A. Program Name: V45

B. Program Language: PRO*C
C. Purpose: This program reads an input file of obligation document numbers that have an

expenditure previously marked as ’final’. The program generates the necessary transactions to
liquidate the remaining obligation balance for subsequent processing by COEMIS. The obligation
amount is decreased bty the balance and the balance is set to 0.
D. Entry Point: Executed as a batch program. Command line must contain the userid and
password for the data base being processed plus the file name (complete path) for input data (see
E).
E. Input Data Requirements: Input data to V45 consists of a file containing obligation
document numbers that have an expenditure previously flagged as 'final’.
F. Output: Program prints the following report:
(1) Listing of the obligation document numbers and amounts for each obligation
liquidation.
(2) Total number of transactions processed.
G. Abnormal Termination: The program will abnormally terminate upon encountering an
ORACLE error. Both a descriptive and the ORACLE error message are printed. Important Note:

The program performs only one commit, after processing all transactions; consequently, an error

in any transaction will roll back all previously completed transactions.
H. Program Executions: The program reads obligation document numbers from the input file

in sequential order and performs the following operations:
(1) Retrieve the following information from the OBLIGATION (o) tatle using the
obligation document number (oblg_doc_nbr).
(a) adp_work_code: The COEMIS ADP work code for this obligation.
(b) net_unliq_bal: The net unliquidated balance for this obligation.
(c) civ_mil_rvolvg flag: An indicator of the category of funds for this obligation,
i.e., civil, military, or revolving fund.

(d) object_class_code: The object class code for this obligation.

126

(e) org_code: The responsible organization code for this obligation.
(f) comt_doc_nbr: The commitment document number referenced by this

obligation.

(2) If the obligation document is not found, print an error message citing the document

number and skip to the next document on the input file.

(3) Create the interface transaction by inserting the following record into the CMR_4480

table:

acpt_date = sysdate

adp_work_code = o.adp_work_code

amount = 0.amount

batch_nbr = ’40’ for civil and 45’ for military
civ_mil_rvolvg_flag = o.civ_mil_rvolvg_flag
dest = 'A’

dist_code = '4’ (Note: This is code for WES)
doc_nbr = oblg_doc_nbr from input file
interface_acpt_flag = 'I’

record_code = 02’

trns_code = "JA’

trns_type_indic = 'O’

item_code = null

object_class_code = o.object_class_code
org_code = o.org_code

other_ref_nbr = null

pay_coll_code = null for civil and *3’ for military
ref_doc_nbr = o.comt_doc_nbr

trf_date = null

trns_month = null

(4) Update the OBLIGATION table, set the amount equal to the amount minus the net
unliquidated balance and set the net unliquidated balance to 0 for the obligation document

127

number being processed.
(5) Read another obligation document number from the input file and go to step 1. If
an EOF is encountered, commit all transactions and exit from the program.

I. Other Program Notes:
(1) District code used in step H(3) is specific for the installation. This parameter will
have to be modified for other installations.
(2) This program locks the following tables in exclusive mode during execution:
CMR_4480 and OBLIGATION. Care should be taken that VIS45 is run alone to avoid
possible deadlock situations.

(3) An attempt to generate this transaction when o.civ_mil_rvolvg_flag = "R’ will result

in an error condition.

128

ACCT_ELM_TYPE

APPENDIX A - TABLE DEFINITIONS

ITEM_CODE NOT NULL CHAR(3)
ITEM_DESC NOT NULL CHAR(60)
CIVIL CHAR(1)
CONTRACT CHAR(1)
IN_HOUSE CHAR(1)
MIL CHAR(1)
OTHRF CHAR(1)
OTHRF_INCOME CHAR(1)
RVOLVG_81 CHAR(1)
APPROPRIATION

APPN_TITLE NOT NULL CHAR(40)
CIV_MIL_RVOLVG_FLAG NOT NULL CHAR(1)
LOC_APPN_NBR NOT NULL CHAR(9)
AUTO_SCHED

OBLG_DOC_NBR NOT NULL CHAR(9)
AMOUNT NOT NULL NUMBER(13,2)
VENDOR_CODE NOT NULL CHAR(10)
INV_NBR NOT NULL CHAR(15)
SCHEDULED_PAYMNT_DATE NOT NULL DATE
TRNSF_DATE NOT NULL DATE
ACPT_FLAG NOT NULL CHAR(1)
DESCR CHAR(60)
CIVRF

ADP_WORK_CODE NOT NULL CHAR(15)
LOC_APPN_NBR NOT NULL CHAR(9)

CLASS_OF_OBLIGATION

CIV_CLASS

DESCR

MIL_CLASS
RVOLVG_FUND_CLASS

CMR_4480

ACPT_DATE
ADP_WORK_CODE
AMOUNT

BATCH_NBR
CIV_MIL_RVOLVG_FLAG
DEST

DIST_CODE

DOC_NBR
INTERFACE_ACPT_FLAG
RECORD_CODE
TRNS_CODE
TRNS_TYPE_INDIC
ITEM_CODE
OBJECT_CLASS_CODE
ORG_CODE
OTHER_REF_NBR
PAY_COLL_CODE
REF_DOC_NBR
TRF_DATE
TRNS_MONTH
PAY_CODE

NOT NULL
NOT NULL
NOT NULL
NOT NULL

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

CHAR(2)
CHAR(40)
CHAR(2)
CHAR(2)

DATE
CHAR(15)
NUMBER(13,2)
CHAR(2)
CHAR(1)
CHAR(1)
CHAR(1)
CHAR(9)
CHAR(1)
CHAR(2)
CHAR(2)
CHAR(1)
CHAR(3)
CHAR®4)
CHAR(2)
CHAR(9)
CHARC(1)
CHAR(9)
DATE
CHAR(2)
CHAR(1)

CONTRACT

AMOUNT
CONTR_MOD_NBR
CONTR_NBR

CONTR_REF_MOD_NBR

ENTRY_USERID
VENDOR_CODE
DATE_OF_AWARD
DISC_TERMS_CODE
ENDING_DATE
FOB_DATE
RET_PERC

RET_PERC_DOC_NBR

TAX_ID

CONTR_OFFICER_REP

DISBURSEMENT

AMOUNT
DISB_DATE
DISB_DOC_NBR
EXP_DOC_NBR
CHECK_NBR
DOV_NBR
TRNSF_DATE

DISC_TERMS

DISC_DAYS
DISC_PERC
DISC_TERMS_CODE

D_F_FILE

ADP_WC_D
ADP_WC_F
AMS_CODE
ALLOTMENT
LOC_APPN_NBR
ADP_WC_G

NOT NULL NUMBER(13,2)
NOT NULL NUMBER(3)
NOT NULL CHAR(16)
NOT NULL NUMBER(Q3)
NOT NULL CHAR(12)
NOT NULL CHAR(10)

DATE
CHAR(2)
DATE

DATE
NUMBER(4,2)
CHAR(9)
CHAR(11)
CHAR(25)

NOT NULL NUMBER(13,2)
NOT NULL DATE

NOT NULL CHAR(9)

NOT NULL CHAR(9)

CHAR(6)
CHAR(6)
DATE

NOT NULL NUMBER(2)
NOT NULL NUMBER(4,2)
NOT NULL CHAR(2)

NOT NULL CHAR(7)
NOT NULL CHAR(15)

CHAR(11)
CHAR(®4)
CHAR(9)

NOT NULL CHARC(15)

A-3

EMPLOYEE

EMPLE_NAME
EMPLE_USERID
ORG_CODE

SSN

EXPENDITURE

AMOUNT
ENTRY_DATE
EXP_DOC_NBR
INIT_ENTRY_ID
OBLG_DOC_NBR
PARTIAL_FINAL_FLAG
VENDOR_ADDR_CODE
VENDOR_CODE
ADP_WORK_CODE
STATUS

CYCLE_NBR
ACPT_DATE
DEL_DATE

DESCRI1

DESCR2
DISC_TERMS_CODE
DSSN_NBR

INV_NBR
PARTIAL_PAY_NBR

SCHEDULED_PAYMNT_DATE

TBO_FLAG

NOT NULL
NOT NULL
NOT NULL
NOT NULL

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

CHAR(40)
CHAR(12)
CHAR(2)
CHAR(9)

NUMBER(13,2)
DATE
CHAR(9)
CHAR(12)
CHAR(9)
CHARC(1)
CHAR(2)
CHAR(10)
CHAR(15)
CHAR(1)
CHAR(2)
DATE
DATE
CHAR(60)
CHAR(60)
CHAR(2)
CHAR(4)
CHAR(15)
NUMBER(3)
DATE
CHAR(1)

INVOICE

DUE_DATE

GROSS_AMT
INIT_ENTRY_ID
INV_DATE

INV_NBR
PROMPT_PAYMNT_FLAG
VENDOR_CODE
DISC_TERMS_CODE

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

EARNINGS_PERIOD_START_DATE
EARNINGS_PERIOD_STOP_DATE

REC_DATE

OBJECT_CLASS_CODES

DESCR
OBJECT_CLASS_CODE
Cc1v

MIL

RVOLVG_FUND

OBLIGATION

AMOUNT
ENTRY_DATE
INIT_ENTRY_ID
ITEM_CODE
OBJECT_CLASS_CODE
OBLG_DOC_NBR
VENDOR_ADDR_CODE
VENDOR_CODE
NET_UNLIQ_BAL
ADP_WORK_CODE
COMT_DOC_NBR
ORG_CODE
CIV_MIL_RVOLVG_FLAG
STATUS
LOC_APPN_NBR
CONTR_MOD_NBR
CONTR_NBR

NOT NULL
NOT NULL

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

DATE
NUMBER(13,2)
CHAR(12)
DATE
CHAR(1S5)
CHAR(1)
CHAR(10)
CHAR(2)
DATE
DATE
DATE

CHAR(40)
CHAR@#)
CHAR(1)
CHAR(1)
CHARC(1)

NUMBER(13,2)
DATE
CHAR(12)
CHARQ3)
CHAR(4)
CHAR(9)
CHAR(3)
CHAR(10)
NUMBER(13,2)
CHAR(15)
CHAR(9)
CHAR(2)
CHAR(1)
CHAR(1)
CHAR(9)
NUMBER(@3)
CHAR(16)

ORGANIZATION

ORG_CODE
ORG_INDIC
ORG_NAME
PARENT_CODE

RECURRING_EXP

AMOUNT
CONTR_MOD_NBR
CONTR_NBR
ENTRY_DATE
EXPR_DATE
INIT_ENTRY_ID
ITEM_CODE
NO_PAYMNTS
OBJECT_CLASS_CODE
OBLG_DOC_NBR
PAYMNT_PERIOD
START_DATE

STATUS
VENDOR_ADDR_CODE
VENDOR_CODE
ADP_WORK_CODE
DESCR1

DESCR2
NEXT_EXP_DATE

ROLE_FUNCT

ROLE
FUNCTCODE

NOT NULL
NOT NULL
NOT NULL

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT WULL
NOT NULL

NOT NULL
NOT NULL

A-6

CHAR(2)
CHAR(1)
CHAR(40)
CHAR(2)

NUMBER(13,2)
NUMBER(3)
CHAR(16)
DATE
DATE
CHAR(12)
CHAR(3)
NUMBER(2)
CHAR(4)
CHAR(9)
NUMBER(2)
DATE
CHAR(1)
CHAR(2)
CHAR(10)
CHARC(15)
CHAR(60)
CHAR(60)
DATE

CHAR(12)
CHAR(9)

SCHEDULED_PAYMNT

ADP_WORK_CODE

AMOUNT
EXP_DOC_NBR
INIT_ENTRY_ID
LOC_APPN_NBR

OBJECT_CLASS_CODE
SCHEDULED_PAYMNT_DATE

STATUS

VENDOR_ADDR_CODE

VENDOR_CODE

CONTR_MOD_NBR

CONTR_NBR
TRNS_DATE
TRNSF_DATE

TRAVEL_EXP

ACPT_FLAG
ADV_AMT
EXP_AMT
OBLG_DOC_NBR
VENDOR_CODE
TRNSF_DATE

USERFUNCT

FUNCTCODE
FUNCTDESC
FUNCTYPE
MNUORD
PARCODE

VENDOR

VENDOR_CODE
VENDOR_NAME
VENDOR_TAX_ID
VENDOR_TYPE

NOT NULL CHARC(15)
NOT NULL NUMBER(13,2)
NOT NULL CHAR(9)
NOT NULL CHAR(12)
NOT NULL CHAR(9)
NOT NULL CHAR(4)
NOT NULL DATE
NOT NULL CHAR(1)
NOT NULL CHAR(2)
NOT NULL CHAR(10)
NUMBER(3)
CHAR(16)
DATE
DATE

NOT NULL CHAR(1)

NOT NULL NUMBER(13,2)

NOT NULL NUMBER(13,2)

NOT NULL CHAR(9)

NOT NULL CHAR(10)
DATE

NOT NULL CHAR(9)
CHAR(50)
CHAR(1)
CHAR(2)
CHAR(9)

NOT NULL CHAR(10)

NOT NULL CHAR(40)
CHAR(11)
CHAR(1)

VENDOR_ADDR

VENDOR_ADDR_CODE
VENDOR_CODE
VENDOR_ADDRI1
VENDOR_ADDR2
VENDOR_CITY
VENDOR_COUNTRY
VENDOR_PHONE
VENDOR _STATE
VENDOR_ZIP

VROLE

KEYCODE
ROLE

DESCRIPTION
PASSWORD
LAST_UPDATE

VUSERID_ROLE

ROLE
USERID

NOT NULL
NOT NULL

NOT NULL
NOT NULL

NOT NULL
NOT NULL

CHAR(2)
CHAR(10)
CHAR(40)
CHAR(40)
CHAR(20)
CHAR(2)
CHAR(10)
CHAR(Q2)
CHAR(10)

CHAR(1)
CHAR(12)
CHAR(40)
CHAR(20)
DATE

CHAR(12)
CHAR(12)

APPENDIX B - DATA DICTIONARY

ACCT_ELM_TYPE

Static table which contains all valid accounting element types (item codes).

ITEM_CODE
A three digit numeric code used to identify a specific item or expense, or type of
cost charged to an account in COEMIS. Same as the COEMIS accounting
element.

ITEM_DESC
A brief description of the item code.

CIVIL
Denotes the item code is civil.

CONTRACT
Denotes the item code is contract.

IN_HOUSE
Denotes the item code is in house.

MIL
Denotes the item code is military.

OTHRF
Denotes the item code is other revolving fund.

OTHRF_INCOME
Denotes the item code is other revolving fund income.

RVOLVG_¢81
Denotes the item code is revolving fund 81.

APPROPRIATION

Static table which contains all valid appropriation numbers for Civil, Military, and
Revolving Fund.

APPN_TITLE
A brief description of the appropriation.

B-1

CIV_MIL_RVOLVG_FLAG
A code which displays the type of appropriation. C is for Civil; M is for Military;
and R is for Revolving Fund.

LOC_APPN_NBR
A nine character code which identifies the appropriation from which the work is
funded.

AUTO_SCHED
Contains obligation and expenditure information for automatically scheduling CitiCorp
travel.

OBLG_DOC_NBR
A unique number that is assigned to the obligation transaction when it is created.
The obligation number contains nine characters and the first is always an "E".
The second and third positions identify the class of obligation. The fourth and fifth
positions identify the fiscal year the obligation is created. The last four positions
are an alphanumeric sequence number.

AMOUNT
The amount of the obligation.

VENDOR_CODE
Code that represents the WES identifier for a specific vendor and it is unique to
the vendor.

INV_NBR
A vendor assigned number to designate a unique invoice for a particular vendor.

SCHEDULED_PAYMNT_DATE
The date the expenditure is scheduled to be paid.

TRNSF_DATE
The date the transactions are uploaded to the vendor system data base.

ACPT_FLAG
A code which denotes whether or not the transaction is in progress, accepted, or
rejected. "I" represents in progress, "A" represents accepted, and "R" represents
rejected.

B-2

DESCR
The description associated with the transaction. May include the traveler’s name.

CIVRF
Contains all 15 digit adp work codes for Civil and Revolving Fund jobs.

ADP_WORK_CODE
A fifteen digit alphanumeric code representing an accounting classification
(account or job number). It identifies the type of funding, project, or account.
LOC_APPN_NBR
A nine character code which identifies the appropriation from which the work is
funded.

CLASS_OF_OBLIGATION
Static table which contains all valid class of obligations for Civil, Military, and Revolving
Fund.

CIV_CLASS
Class of obligation code for Civil.

DESCR
Brief description for the obligation class.

MIL_CLASS
Class of obligation code for Military.

RVOLVG_FUND_CLASS
Class of obligation code for Revolving Fund.

CMR_4480
Contains obligation, expenditure, and disbursement transactions in 4480 format for
updating COEMIS.

ACPT_DATE
Date transaction is entered into the system.

ADP_WORK_CODE

A fifteen digit alphanumeric code representing an accounting classification
(account or job number). It identifies the type of funding, project, or account.

B-3

AMOUNT
The transaction amount sent to COEMIS for a particular type of document.

BATCH_NBR
A two character numeric code which identfies a batch in COEMIS.

CIV_MIL_RVOLVG_FLAG
A code which displays the type of appropriation. C is for Civil; M is for Military;
and R is for Revolving Fund.

DEST
Determines if the transaction goes to COEMIS or Funds Control. "A" represents
COEMIS and "F" represents Funds Control.

DIST_CODE
A one character numeric code to designate a Corps of Engineers (COE) facility.
The district code for WES is 4.

DOC_NBR
A nine digit alphanumeric code which represents different type of documents. A
"R" in the first position of the nine digit number signifies a Commitment
Document Number. An "E" refers to an Obligation Document Number. A "F"
refers to an Expenditure Document Number. A "K" refers to a Disbursement
Document Number.

INTERFACE_ACPT_FLAG
A flag which is set to I’ if the transaction has not been sent to COEMIS or A’
if the transaction has been sent to COEMIS.

RECORD_CODE
A two character numeric code assigned to an input document which indicates the
format of the record for processing data.

TRNS_CODE
A two character alpha code which designates the type of action to be performed
on a transaction.

TRNS_TYPE_INDIC
Identifies the document type.

ITEM_CODE
A three digit numeric code used to identify a specific item or expense, or type of
cost charged to an account in COEMIS. Same as the COEMIS accounting
element.

B-4

OBJECT_CLASS_CODE
A four digit numeric code which represents object classification. It is a method
to provide for the classification of obligations or expenditures representing the
different types of services, goods, or other items being procured or consumed.

ORG_CODE
A two digit alphanumeric code assigned to a particular organizational element of
a Corps facility.

OTHER_REF_NBR
A nine digit alphanumeric code which represents different types of documents and
references the document number.

PAY_COLL_CODE
A one digit numeric code used to designate a type of transaction payment.

REF_DOC_NBR
A nine digit alphanumeric code which represents different types of documents and
references the document number.

TRF_DATE
The day the transaction is sent to COEMIS.

TRNS_MONTH X
The calendar month the transaction is sent to COEMIS.

PAY_CODE
Used to designate transactions that are "within or outside the government” for
object class purposes.

CONTRACT
Contains detail information for a specific contract.

AMOUNT
The gross amount of the contract.

CONTR_MOD_NBR

A sequential number that is entered each time a modification is made to the
contract.

CONTR_NBR
A unique number assigned to a legally enforceable binding agreement between
two or more parties for the supply of certain goods or services.

CONTR_REF_MOD_NBR
The "parent” or first contract mod number for a contract that is within the same
scope of work.

ENTRY_USERID
A userid that is associated with the employee name who entered the contract
information into the system.

VENDOR_CODE
A 10 digit code that identifies products/services provided to the Corp of
Engineers.

DATE_OF_AWARD
Date the contract is actually awarded.

DISC_TERMS_CODE
Each contract as negotiated with the contractor can have various terms offered by
the government and contractor. Discount terms allow the government to pay less
than the billed earnings when they are paid early or within a specified time period.
These terms may also be used in the invoice. These codes are assigned to identify
the combination of negotiated terms and discount percentage.

ENDING_DATE
Date the contract is expected to end.

FOB_DATE
Date the goods were placed or delivered to the FOB destination.

RET_PERC
The percentage of a contractor’s earnings, agreed upon during contract negotiation,
that will be withheld until final delivery.

RET_PERC_DOC_NBR
Document number assigned to the retained earnings withheld and not yet
disbursed to the contractor.

TAX_ID

Federal tax id number that is assigned to a corporation or company. It is used to
report earnings to the IRS.

B-6

CONTR_OFFICER_REP
The government employee assigned to monitor a contract and to act as an agent
of the contracting officer.

DISBURSEMENT
Contains detail disbursement information for an expenditure.

AMOUNT
The amount to be disbursed to the vendor.

DISB_DATE
The date the document is disbursed.

DISB_DOC_NBR
The document number assigned to the COEMIS transaction to record the
liquidation of the expenditure and the disbursement of the cash to the vendor.

EXP_DOC_NBR
A number used to identify the cost or expenditure transaction created when goods
or services are received.

CHECK_NBR
A unique number assigned to each check being disbursed.

DOV_NBR
The disbursing officer’s voucher number assigned to the batch of transactions
being disbursed.

TRNSF_DATE
The date the disbursement transaction is transferred from the disbursing system
to COEMIS.

DISC_TERMS
Static table which contains all available discount terms possible for a contract or invoice.

DISC_DAYS
The number of days used to calculate the valid discount.

DISC_PERC
The actual percentage of the discount.

DISC_TERMS_CODE
Each contract as negotiated with the contractor can have various terms offered by
the government and contractor. Discount terms allow the government to pay less
than the billed earnings when they are paid early or within a specified time period.
These terms may also be used in the invoice. These codes are assigned to identify
the combination of negotiated terms and discount percentage.

D_F_FILE
Contains all D, F, and G level adp work codes for Military jobs.

ADP_WC_D
Military "D" level ADP Work Code.

ADP_WC_F
Military "F” level ADP Work Code.

AMS_CODE
Army Management System code assigned to a funding document or program.

ALLOTMENT
The administrative allocation of the congressionally approved appropriated funds.

LOC_APPN_NBR
A nine character code which identifies the appropriation from which the work is
funded.

ADP_WC_G
Military "G" level ADP Work Code.

EMPLOYEE
Contains all employees having access to the Vendor Information System.

EMPLE_NAME
Name of WES employee.

EMPLE_USERID
ID associated with the employee name.

ORG_CODE

A two digit alphanumeric code assigned to a particular organizational element of
a Corps facility.

B-8

SSN
The social security number that is associated with the employee.

EXPENDITURE

Contains detail information for an expenditure.

AMOUNT
Amount recorded as cost/expenditure for goods and services placed or consumed.

ENTRY_DATE
Date the expenditure is entered into the system.

EXP_DOC_NBR
A unique number used to identify a transaction record made by the receipt of
goods or services. The expenditure number contains nine characters and the first
character is always an 'F’.

INIT_ENTRY_ID
The userid of the employee who entered the expenditure into the system.

OBLG_DOC_NBR
A unique number that is assigned to the obligation transaction when it is created.
The obligation number contains nine characters and the first character is always
an ’E’. This particular obligation number is the number that is being expended
against.

PARTIAL_FINAL_FLAG
A flag which denotes whether the payment is partial or final. It is marked "F" for
final or "P" for partial.

VENDOR_ADDR_CODE
A number uniquely identifying a particular address for a vendor.

VENDOR_CODE
Code that represents the WES identifier for a specific vendor and it is unique to
the vendor.

ADP_WORK_CODE

A fifteen digit alphanumeric code representing an accounting classification
(account or job number). It identifies the type of funding, project, or account.

B-9

STATUS
This flag denotes that the expenditure is either certified or canceled. A "C"

represents certified and a "X" represents canceled.

CYCLE_NBR
COEMIS required number that equates to the run number for an update.

ACPT_DATE
The date the goods and services are accepted as represented by the receiving
report and expenditure documents.

DEL_DATE
The date the goods are to be delivered.

DESCRI1
Line 1 of a brief description that is entered by the user.

DESCR2
Line 2 of a brief description that is entered by the user.

DISC_TERMS_CODE
Each contract as negotiated with the contractor can have various terms offered by
the government and the contractor. Discount terms allow the government to pay
less than the billed earnings when they are paid early or within a specified time
period. These terms may also be used in the invoice. These codes are assigned
to identify the combination of negotiated terms and discount percentage.

DSSN_NBR
Disbursing station number assigned to the Department of Treasury.

INV_NBR
A vendor assigned number to designate a unique invoice for a particular vendor.

PARTIAL_PAY_NBR
A RMO number assigned to the consecutive payment of a contract that has
progressive or periodic eamnings. Each earnings period or earnings request will
be assigned a partial payment number for their control of the sequence of the
disbursements.

SCHEDULED_PAYMNT_DATE
The date the expenditure is scheduled to be paid.

TBO_FLAG
A flag that tells the disbursing system that the expenditure is a "transaction by

B-10

others" and creates a unique accounting entry for the recording of the
disbursement made by another government office for WES.

INVOICE
Contains detail invoice information for a particular vendor.

DUE_DATE
The date the invoice is due.

GROSS_AMT
The total amount for the invoice.

INIT_ENTRY_ID
The userid of the employee who entered the invoice information into the system.

INV_DATE
The date of the invoice.

INV_NBR
A vendor assigned number to designate an invoice from a particular vendor.

PROMPT_PAYMNT_FLAG
A flag which denotes whether or not the invoice is subject to prompt payment.
A "Y" represents yes and a "N" represents no.

VENDOR_CODE
Code that represents the WES identifier for a specific vendor and it is unique to
the vendor.

DISC_TERMS_CODE
Each contract as negotiated with the contractor can have various terms offered by
the government and contractor. Discount terms allow the government to pay less
than the billed earnings when they are paid early or within a specified time period.
These codes are assigned to identify the combination of negotiated terms and
discount percentage.

EARNINGS_PERIOD_START_DATE
The date the contractor’s eamings start.

EARNINGS_PERIOD_STOP_DATE
The ending date the contractor’s invoice is requesting payment through.

B-11

REC_DATE
The date the goods are received.

OBJECT_CLASS_CODES
Static table which contains all valid object class .odes.

DESCR
A brief description of the object class code.

OBJECT_CLASS_CODE
A four digit numeric code which represents object classification. It is a method
to provide for the classification of obligations or expenditures representing the
different types of servires, goods, or other iteris being procured or consumed.

CIv
Denotes a civil object class code.

MIL
Denotes a military obje class code.

RVOLVG_FUND
Denotes a revolving fund object class code.

OBLIGATION
Contains detail information for an obligation.

AMOUNT
The amount of the obligation.

ENTRY_DATE
The date the obligation is entered into the system.

INIT_ENTRY_ID
The userid of the employee who entered the obligation into the system.

ITEM_CODE
A three digit numeric code used to identify a specific item or expense, or type of
cost charged to an account in COEMIS.

OBJECT_CLASS_CODE
A four digit numeric code which represents object classification. It is a method
to provide for the classification of obligations or expenditures representing the

B-12

different types of services, goods, or other items being procured or consumed.

OBLG_DOC_NBR
A unique number that is assigned to the obligation transaction when it is created.
The obligation number contains nine characters and the first is always an "E".
The second and third positions identify the class of obligation. The fourth and fifth
positions identify the fiscal year the obligation is created. The last four positions
are an alphanumeric sequence number.

VENDOR_ADDR_CODE
A number uniquely identifying a particular address for a vendor.

VENDOR_CODE
Code that represents the WES identifier for a specific vendor and it is unique to
the vendor.

NET_UNLIQ_BAL
This is the remaining balance left in the obligation. If any expenditures are
created against the obligation, the expenditure amount is subtracted from the net
unliquidated balance.

ADP_WORK_CODE
A fifteen digit alphanumeric code representing an accounting classification
(account or job number). It identifies the type of funding, project, or account.

COMT_DOC_NBR
A nine digit alphanumeric number which the obligation references as a reference
document number. Obligations will liquidate the commitment document’s net
unliquidated balance. This number beings with an "R".

ORG_CODE
A two digit alphanumeric code assigned to a particular organizational element of
a Corps facility.

CIV_MIL_RVOLVG_FLAG
A code which displays the type of appropriation. C is for civil; M for military;
and r is for revolving.

STATUS
A code which denotes whether the obligation is certified or canceled. A "C"
represents certified and a "X" represents canceled.

B-13

LOC_APPN_NBR
A nine digit alphanumeric code which identifies the appropriation from which the
work is funded.

CONTR_MOD_NBR

A sequential number that is entered each time a modification is made to the
contract.

CONTR_NBR
A unique number which represents a legally enforceable binding agreement
between two or more parties for the supply of certain goods or services.

ORGANIZATION
Static table which contains all valid organization codes for WES.

ORG_CODE

A two digit alphanumeric code assigned to a particular organizational element of
a Corps activity.

ORG_INDIC
Identifies the organization’s work unit.

ORG_NAME
Name of the organization.

PARENT_CODE
The organization code structure is designed in a way that every child org code

must belong to a higher level org code or a parent org code. A parent org code
can have many different children org codes or just one.

RECURRING_EXP
Contains detail information for a recurring expenditure.

AMOUNT
The expenditure amount to be used when the recurring expenditure is created.

CONTR_MOD_NBR

A sequential number that is entered each time a modification is made to a
contract.

B-14

CONTR_NBR
A number which represents a legally enforceable binding agreement between two
or more parties for the supply of certain goods or services.

ENTRY_DATE
The date the recurring expenditure is entered into the system.

EXPR_DATE
The date the expenditure is created.

INIT_ENTRY_ID
The userid of the employee who entered the recurring expenditure into the system.

ITEM_CODE
A three digit numeric code used to identify a specific item or expense, or type of
cost charged to an account in COEMIS.

NO_PAYMNTS
A numeric number which denotes the number of payments that are made for the
recurring expenditure.

OBJECT_CLASS_CODE
A four digit numeric code which represents object classification. It is a method
to provide for the classification of obligations or expenditures representing the
different types of services, goods, or other items being procured or consumed.

OBLG_DOC_NBR
A unique number that is assigned to the obligation transaction when it is created.
The number contains nine characters and the first is always an "E". The
obligation number that the recurring expenditure references and liquidates.

PAYMNT_PERIOD
The two digit numeric code that represents how often an expenditure is to be
generated for payment.

START_DATE
Date the payments are to start.

STATUS
A one character code which represents whether the recurring expenditure is active
or inactive. An "A" denotes active and an "I" denotes inactive.

VENDOR_ADDR_CODE
A number uniquely identifying a particular address for a vendor.

B-15

VENDOR_CODE
Code that represents the WES identifier for a specific vendor and it is unique to

the vendor.

ADP_WORK_CODE
A fifteen digit alphanumeric code representing an accounting classification
(account or job number). It identifies the type of funding, project, or account.

DESCR1
Line 1 of a brief description that the user enters.

DESCR2
Line 2 of a brief description that the user enters.

NEXT_EXP_DATE
A date generated by the system which determines the next date the expenditure
is created.

ROLE_FUNCT
Static table which contains all functional roles and corresponding screen codes.

ROLE
The functional role the system allows users to play and thus determines the
appropriate screens the user may access.

FUNCTCODE
List of screens each role may access.

SCHEDULED_PAYMNT
Contains detail information for expenditures scheduled for payment.

ADP_WORK_CODE
A fifteen digit alphanumeric code representing an accounting classification
(account or job number). It identifies the type of funding, project, or account.

AMOUNT
The amount the expenditure is scheduled for payment.

EXP_DOC_NBR
A unique number used to identify a transaction record made by the receipt of

B-16

goods or services. This number is 9 characters and always begins with an "F".
The expenditure number is the reference document number used by the disbursing
transaction.

INIT_ENTRY_ID
The userid of the employee who scheduled the expenditure for payment.

LOC_APPN_NBR
A nine digit alphanumeric code which identifies the appropriation from which the
work is funded.

OBJECT_CLASS_CODE
A four digit numeric code which represents object classification. It is a method
to provide for the classification of obligations or expenditures representing the
different types of services, goods, or other items being procured or consumed.

SCHEDULED_PAYMNT_DATE
The date the expenditure is scheduled to be paid.

STATUS
A one character code which represents whether the scheduled payment is canceled,
inactive, or active. ’C’ represents canceled, 'I’ represents inactive , and 'A’
represents active.

VENDOR_ADDR_CODE
A number uniquely identifying a particular address for a vendor.

VENDOR_CODE
Code that represents the WES identifier for a specific vendor and it is unique to
the vendor.

CONTR_MOD_NBR
A sequential number that is entered each time a modification is made to a
contract.

CONTR_NBR
A unique number which represents a legally enforceable binding agreement
between two or more parties for the supply of certain goods or services.

TRNS_DATE
The date the transaction is created.

B-17

TRNSF_DATE
The date the transaction is sent to COEMIS.

TRAVEL_EXP
Contains obligation and expenditure information for generating travel expenditures.

ACPT_FLAG
A code which denotes whether or not the travel expenditure is in progress,
accepted or rejected. "I" represents in progress, "A" represents accepted, and "R"
represents rejected.

ADV_AMT
The amount of the travel advance.

EXP_AMT
The amount of the expenditure.

OBLG_DOC_NBR
A unique number that is assigned to the obligation transaction when it is created.
The number contains nine characters and the first is always an "E". The
obligation number that the travel expenditure is against or references as the
reference document number.

VENDOR_CODE
Code that represents the WES identifier for a specific vendor and it is unique to
the vendor. For travel it is the employee’s social security number.

TRNSF_DATE
The date the transactions are uploaded to the vendor system data base.

USERFUNCT
Static table which contains menuing information.

FUNCTCODE
Name of the SQL*FORM accessed in menu or a menu screen.

FUNCTDESC
Description of the SQL*FORM.

FUNCTYPE

Determines if the functcode is a menu or an SQL*FORM. ’'F’ denotes form and
'M’ denotes menu.

B-18

MNUORD
Determines the hierarchy of the menu.

PARCODE
Determines where the SQL*FORM is located in the menu hierarchy.

VENDOR
Contains a list of all the available vendor codes.

VENDOR_CODE
Code that represents the WES identifie- for a specific vendor and it is unique to
the vendor.

VENDOR_NAME
The vendor name that is associated with the vendor code.

VENDOR_TAX_ID
Federal tax id number that is assigned to the vendor. It is used to report earnings
to the IRS. ‘

VENDOR_TYPE
This denotes whether the vendor is commercial or noncommercial. "C" represents
commercial and "N" represents noncommercial.

VENDOR_ADDR
Contains addresses for each vendor.

VENDOR_ADDR_CODE
A number uniquely identifying a particular address for a vendor.

VENDOR_CODE
Code that represents the WES identifier for a specific vendor and it is unique to
the vendor.

VENDOR_ADDRI1
Line 1 of the vendor’s street address.

VENDOR_ADDR2
Line 2 of the vendor’s street address.

VENDOR_CITY
The city the vendor is located.

B-19

VENDOR_COUNTRY
The country the vendor is located.

VENDOR_PHONE
The area code and phone number where the vendor can be reached.

VENDOR_STATE
The state the vendor is located.

VENDOR_ZIP
The zip the vendor is located.

VROLE

Static table which contains all available roles and their descriptions.

KEYCODE
The first letter of available roles in VIS.

ROLE
List of roles available in VIS.

DESCRIPTION
A brief description of each role.

PASSWORD
Password encryption used to connect and disconnect roles to VIS.

LAST_UPDATE
Last time this table is updated.

VUSERID_ROLE

Static table which contains userids and the roles they have access to.

ROLE
Roles each userid may access.

USERID
The userid of the employee.

B-20

Waterways Experiment Station Cataloging-in-Publication Data

Duett, Patti S.

Vendor Information System (VIS) systems manual / by Patti S. Duett,
Monique F. Harrison.

156 p. :ill. ; 28 cm. -- (Technical report ; ITL-92-5)

1. Vendor Information System (Information retrieval system) 2. SQL
(Computer program language) 3. Management information systems.
4. Programming languages (Electronic computers) |. Harrison, Monique
F. Il. U.S. Army Engineer Waterways Experiment Station. lil. Title.
IV. Series: Technical report (U.S. Army Engineer Waterways Experiment
Station) ; ITL-92-5.
TA7 W34 no.ITL-92-5

